The growth of massive stars via stellar collisions in ensemble star clusters M.S. Fujii, S. Portegies Zwart

Brunetto Marco Ziosi

Department of Physics and Astronomy G. Galilei University of Padua

Journal Club,

May 13th, 2013

Outline

1 Young star clusters

2 The growth of massive stars

3 The simulations

Relevant star cluster properties

- Core radius: where density is $\frac{1}{3}$ of the central one; usually the core is a strongly interacting subsystem
- Relaxation time: necessary to lose memory of initial conditions (initial v distrib. → Maxwellian one)

Relevant star cluster processes

- **Evaporation:** stars with $v_i > 2\sqrt{\langle v^2 \rangle}$ can escape the system \Rightarrow with Maxwellian velocities there are **always stars leaving the system**
- Core collapse: stars evaporate ⇒ K does not balance W ⇒ core contracts ⇒ density increases ⇒ more evaporation ⇒K does not balance W ⇒ core contracts ⇒

• Mass segregation:

. . .

 $IMF + m_i v_i^2 = m_j v_j^2 + dynamical friction =$

massive stars move to the core and lighter ones move towards the external regions

- * During the core-collapse the density in the core increases dramatically
- * Mass segregation **enhances** core collapse!

Core-collapse and runaway merger

- Observations found super-canonical stars $(150-300\,{\rm M}_\odot)$ we cannot explain with our stellar evolution models
- Need a mechanism to create them \Rightarrow runaway merger: multiple collisions between massive stars
- To obtain it \Rightarrow many stars in a localized dense region = SC core during **core-collapse**
- Core-collapse must occur **before** SN explosion of the most massive stars $(t_{cc} < 3 \text{ Myr})$

New in this paper

- First paper studying runaway merger in an assemblage of sub-clusters
- Previous studies: (sub-)virial and with(out) mass segregated ICs solo-clusters
- Why is an assemblage of sub-clusters **more realistic**?
 - Molecular clouds have multiple cores
 - better reproduction SCs' dynamical maturity
 - smaller SCs have smaller relaxation time hence smaller t_{cc}

Simulation details

Subclusters:

- $\sum m_i = M_{solo}$
- Two different King profiles
- Sub-cluster models:
 - 2kw2: $W_0 = 2$, $M_{tot} = 6300 \,\mathrm{M_{\odot}}$, $r_{hm} = 0.092$ pc, N=2048
 - 8kw5: $W_0=$ 5, $M_{\rm tot}=2.5 imes 10^4\,{
 m M}_{\odot}$, $r_{\rm hm}=0.22$ pc, N=8192

- Salpeter IMF with $M \in [1, 100] \,\mathrm{M}_{\odot}$: $\frac{\mathrm{d}N}{\mathrm{d}M} \propto M^{-\alpha}$, $\alpha \sim 2.35$
- 4 or 8 sub-clusters in a **sphere** or a **filament** (e.g. gas shock in galactic arms)

Solo models:

• Two more ICs (16kw6, 64kw8)

Simulations summary

Massive stars via stellar collisions

Results

Assembly-clusters collision product mass

Conclusions 1

- Authors test the **runaway merger model** to produce massive stars in the sub-cluster **assembly scenario**
- The assembled-cluster evolution result depend upon t_{cc} vs t_{ens}
- Late assembly ($t_{cc} > t_{ens}$): dynamics prevents the formation of extremely massive collision products ($m_{MAX} \lesssim 400 \, M_{\odot}$)
- Early assembly ($t_{cc} < t_{ens}$): the system can form collision products up to $10^3 \,\mathrm{M}_{\odot}$ even if they experience wind mass loss after the collision

Conclusions 2

Strengths

- First time runaway merger studied in assembly of sub-clusters
- Realistic scenario for the cluster formation
- 6-th order Hermite integrator \rightarrow can handle binaries

Weaknesses

- Sub-clusters half-mass radii are too small to be realistic (0.092 and 0.22 pc)
- $m_{
 m min} = 1\,{
 m M}_{\odot}$ is too large
- Stellar winds only for $M>100\,{\rm M}_\odot$ is unphysical \to here only collision products can experience mass-loss

Gravothermal instability

- Star cluster \sim gas cloud
- Strongly self-interacting systems have **negative heat capacity**
- kinetic energy \rightarrow dynamical temperature: $K = \frac{1}{2} \langle mv^2 \rangle = \frac{3}{2} k_B T$
- From the virial the total internal energy $E = -K = -\frac{3}{2}Nk_B\langle T \rangle$
- The **heat capacity** is then defined as $C \equiv \frac{dE}{dT} = -\frac{3}{2}Nk_B < 0$
- If $K \searrow \equiv T \searrow$ (loss of stars) $\Rightarrow dE = -\frac{3}{2}Nk_B dT > 0 \Rightarrow$ more stars evaporation and core contraction
- To make it happens the halo must behave like a **thermal bath** thus it must "absorb" the kinetic energy of the evaporating stars

Massive stars via stellar collisions

Complete simulation scheme

B. Ziosi (Dept. of Physics and Astronomy)