Influence of **dynamics** and **metallicity** on the formation and evolution of **black-hole binaries** in **star clusters**

> Brunetto M. Ziosi (University of Padova, INAF-Padova)

Collaborators: Michela Mapelli (INAF-Padova), Marica Branchesi (University of Urbino), Giuseppe Tormen (Univ. Padova)

> Gravasco, W2 workshop Paris, 2013-11-08

Outline

1 Overview

- DCOBs and GWs
- Stellar evolution and BH mass
- Star cluster dynamics

2 Tools

• Direct N-body simulations

3 Results

- DCOB population
- Life-times & Exchanges
- Orbital properties distribution
- Mass distribution
- Coalescence times

4 Conclusions

Why DCOBs?

- DCO binaries during inspiral and merger events produce **GWs** we could observe in the near future
- Simulations provide theoretical models to interpret Advanced Virgo/LIGO upcoming data
- Key quantities:
 - Number of DCOBs
 - BH mass spectrum
 - Binary orbital properties

Overview

Why stellar evolution and metallicity (Z)?

- Massive stars **lose mass** by stellar winds
- Winds efficiency **depends** on **metallicity**
- Stars with M_{fin} ≥ 40M_☉ are expected to collapse to a BH without SN explosion

(Fryer 1999, Fryer&Kalogera 2001)

- BHs formed from direct collapse are **more massive** than BHs formed from SN
- Metal-poor stars lose less mass by stellar winds ⇒ more likely to collapse to BH directly

Dynamics, Z and DCOBs Why dynamics? Why YSCs?

- YSCs are birthplace for > 80% of stars in the local universe (Lada&Lada, 2003)
- (Collisional) YSCs are
 - young (< 100 Myr)
 - relatively massive $(10^3 10^7 M_{\odot})$,
 - dense $(10^3 10^6 \star / pc^3)$

groups of stars

• YSCs are sites of **intense dynamical activity**: central *t*_{relax} < 10 Myr

Overview

Dynamics, Z and DCOBs Why dynamics? Why YSCs?

Overview

- Focus on **3-body encounters**: close encounters between a single object and a binary
- If kinetic energy is tranferred from the binary to the single object ⇒ SMA decrease (hardening)
- "Hard" binary: $\frac{Gm_1m_2}{a} \geq \frac{1}{2} \langle m \rangle \sigma^2$
- Hard binaries tend to become harder, soft binaries tend to become softer as effect of three-body encounters (Heggie 1975)
- If $m_{\rm single} \ge m_2 \Rightarrow$ the single star can take the place of one of the stars in the binary \Rightarrow **exchange**

Overview

Stellar evolution

- **Dynamics** enhances the formation of hard compact-object binaries (exhanges also produces very high eccentricity binaries)
- Key processes:
 - mass segregation
 - 3-body exchanges
 - hardening

Tools

- 200 N-body realizations of the same cluster for each $Z=0.01, 0.1, 1Z_{\odot}$
- StarLab: Kira (GPU) + SeBa (CPU) (Portegies Zwart et al. 2001)
- Our simulations combines dynamics + up-to-date recipes for Z-dependent stellar evolution
- Custom recipes:
 - accurate metallicity-dependent stellar evolution (Hurley et al. 2000) and stellar winds (Vink et al. 2001; Vink & de Koter 2005; Belczynski et al. 2010)
 - the possibility of massive BHs formation by **direct collapse** (Fryer et al.

2012; Mapelli et al. 2013)

600 simulations			
Parameter	Value		
W ₀	5		
<i>N</i> _*	5500		
$M_{ m tot}$	$\sim 3500 M_{\odot}$		
r _c [pc]	0.4		
$c = r_{\rm t}/r_{\rm c}$	1.03		
IMF	Kroupa (2001)		
$m_{ m min}~[{ m M}_{\odot}]$	0.1		
$m_{ m max}$ [M $_{\odot}$]	150		
f_{PB}	0.1		
$Z [Z_{\odot}]$	0.01, 0.1, 1		
Sim. time	100 Myr		
MW typical, e.g. Orion Nebula Cluster			

DCOB population

Ziosi et al., in prep

- DBH distribution
- Mean number of DBHs: \sim 3
- Max number of DBHs: 18
- $\#~NS\sim4~\#~BH$ but
- # DBH ~ 10 # DNS due to dynamics
- Negligible **dependence on Z**, but... (see after)

Results

DBH population in time

Low-Z case vs higher metallicities:

- Build up the DBH population **before** high-Z case •
- Higher DBH mass allowed ⇒ earlier DBHBs formation
- **But** mean # and mean # in time of DBHs do not agree
- Higher DBH mass allowed \Rightarrow more stable binaries & **longer lifetime**

Ziosi et al., in prep

Results

DBH population in time

Low-Z case vs higher metallicities:

- Build up the DBH population **before** high-Z case
- Higher DBH mass allowed ⇒ earlier DBHBs formation
- **But** mean # and mean # in time of DBHs do not agree
- Higher DBH mass allowed \Rightarrow more stable binaries & **longer lifetime**

Ziosi et al., in prep

Results

Exchanges & mean DCOB life time

- Z=0.01 Z_{\odot} DBHBs live longer than at higher Z **but** the avg number of exchanges is similar
- Z=0.1, 1 Z_{\odot} DBHBs tend to **break-up**
- DNS are 10 times less numerous but are much more stable

Avg e	exchanges	$per\ CO$	and Z
Туре	e 0.01Z $_{\odot}$	$0.1 \ \text{Z}_{\odot}$	Z_{\odot}
DBH	9.92	9.91	10.14
DNS	0.00	0.5	0.26

• **97%** of all the DBHBs come from **exchanges**

Orbital properties

- Distribution of orbital parameters at minimum semi-major axis
- Critical for **coalescence** times and mergers **detection**
- SMA and period span a wide range
- Eccentricity follows the thermal distribution $f(e) \propto 2e$ but
- excess in *e* ~ 0: **GW** and tidal circularization
- **DNS** (grey) are 10 times less numerous but have small SMA and short periods

Masses

- High BH masses because of direct collapse at low metallicity
- Chirp mass $m_{\rm chirp} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
- Why chirp mass:
 - $u_{
 m GW} \propto m_{
 m chirp}^{-5/8}$, $h_{
 m GW} \propto m_{
 m chirp}^{5/3}$
 - So from observations we can reconstruct $m_{\rm chirp}$
 - In our model $m_{\rm chirp}$ strongly depends on Z
 - \Rightarrow Z-dependent BH mass model test
- But: in black chirp mass distribution of the best merger-candidates

Coalescence times

- Time to reach SMA=0 considering only GW emission
- $t_{GW} \propto rac{a^4(1-e^2)^{7/2}}{m_1m_2m_{
 m tot}}$ (Peters, 1964)
- GW emission: **SMA shrink** and **orbit circularization**
- Dynamical outlier: signal detectability depends on *e*
- 7 DBHs with $t_{\rm GW} <$ 13 Gyr (0 for Z=Z_ $_{\odot})$
- 17 DNSs with $t_{\rm GW} <$ 13 Gyr, 11 DNS mergers during the simulations

Conclusions

- DCOBs during mergers emits GWs likely to be detected in the near future
- **Metallicity** is important:
 - Heavier BHs form at low Z
 - They tend to form DBHBs at early times
 - and these binaries are $\textbf{more stable} \Rightarrow BHBs$ lifetimes are longer at low Z
- Dynamics is important
 - Dynamics enhances the formation of DCOBs: **97% of DBHBs** come **from exchanges**
 - Dynamics hardens binaries and can modify the eccentricity \Rightarrow increase detection probability
- DNSBs are 10 times less numerous but are harder
 - Fewer exchanges and shorter coalescence times than DBHBs
 - Selection effect

Thank you