Influence of **dynamics** and **metallicity** on the formation and evolution of **black-hole binaries** in **star clusters**

PhD student: Brunetto M. Ziosi

Supervisors: Dr. Michela Mapelli, Prof. Giuseppe Tormen

Dept. of Physics and Astronomy G. Galilei (Univ. of Padova), INAF-Padova, FIRB 2012

> PhD Workshop Padova, 2013-11-28

Outline

1 Overview

- DCOBs and GWs
- Stellar evolution and BH mass
- Star cluster dynamics

2 Tools

• Direct N-body simulations

3 Results

- DCOB population
- Orbital properties distribution
- Mass distribution
- Coalescence times

4 Conclusions

Why DCOBs?

- CO: neutron stars and stellar black-holes
- DCO binaries during inspiral and merger events produce GWs we could observe in the near future
- Simulations provide theoretical models to interpret Advanced Virgo/LIGO upcoming data
- Key quantities:
 - Number of DCOBs
 - BH mass spectrum
 - Binary orbital properties

Dynamics, Z and DCOBs

Overview

Why stellar evolution and metallicity (Z)?

- Massive stars **lose mass** by stellar winds
- Winds efficiency **depends** on **metallicity**
- Stars with M_{fin} ≥ 40M_☉ are expected to collapse to a BH without SN explosion

(Fryer 1999, Fryer&Kalogera 2001)

- BHs formed from direct collapse are more massive than BHs formed from SN
- Metal-poor stars lose less mass by stellar winds ⇒ more likely to collapse to BH directly

Why dynamics? Why YSCs?

- YSCs are birthplace for $\sim 80\%$ of stars in the local universe ${}_{(Lada\&Lada,\ 2003)}$
- (Collisional) YSCs are
 - young (< 100 Myr)
 - relatively massive $(10^3 10^7 M_{\odot})$,
 - dense $(10^3 10^6 \star / pc^3)$

groups of stars

• YSCs are sites of intense dynamical activity: central $t_{\rm relax} \sim 10-100$ Myr

Dynamics, Z and DCOBs

Overview

Why dynamics? Why YSCs?

- **3-body encounters**: close encounters between a single object and a binary
- If kinetic energy is tranferred from the binary to the single object ⇒ semi-major axis decreases (hardening)
- "Hard" binary: $\frac{Gm_1m_2}{2a} \geq \frac{1}{2} \langle m
 angle \sigma^2$
- Hard binaries tend to become harder as effect of three-body encounters (Heggie 1975)
- The single star can take the place of one of the stars in the binary \Rightarrow exchange
- High probability if $m_{\rm single} \gtrsim m_{\rm i}$ and possibility of high final e)
- BHs have high masses ⇒ high probability to acquire a companion through 3-body exchange

Tools

- 200 N-body realizations of the same cluster for each $Z=0.01, 0.1, 1Z_{\odot}$
- StarLab: Kira (GPU) + SeBa (CPU) (Portegies Zwart et al. 2001)
- Our simulations combine dynamics + up-to-date recipes for Z-dependent stellar evolution
- Stellar-evolution recipes:
 - accurate **metallicity-dependent** stellar evolution (Hurley et al. 2000) and stellar winds (Vink et al. 2001; Vink & de Koter 2005; Belczynski et al. 2010)
 - the possibility of massive BHs formation by **direct collapse** (Fryer 1999;

Fryer & Kalogera 2001; Mapelli et al. 2009)

600 simulations	
Parameter	Value
W ₀	5
<i>N</i> _*	5500
$M_{ m tot}$	$\sim 3500 M_{\odot}$
<i>r</i> _c [pc]	0.4
$c = r_{\rm t}/r_{\rm c}$	1.03
IMF	Kroupa (2001)
$m_{ m min}~[{ m M}_{\odot}]$	0.1
$m_{ m max}$ [M $_{\odot}$]	150
$f_{\rm PB}$	0.1
$Z [Z_{\odot}]$	0.01, 0.1, 1
Sim. time	100 Myr
MW typical, e.g. Orion Nebula Cluster	

DCOB population

- DBH distribution
- Mean number of DBHs: \sim 3
- Max number of DBHs: 18
- $\#~NS\sim4~\#~BH$ but
- # DBH \sim 10 # DNS due to dynamics
- Negligible **dependence on Z**, but... (see after)

Dynamics, Z and DCOBs Re

Results

DBH population in time

Low-Z case vs higher metallicities:

- Build up the DBH population **before** high-Z case
- Higher BH masses allowed \Rightarrow earlier DBHBs formation
- Higher BH masses allowed \Rightarrow more stable binaries & longer lifetime

Ziosi et al., in prep

Orbital properties

- Distributions of orbital parameters at minimum semi-major axis
- Critical for coalescence times and mergers detection
- SMA and period span a wide range
- **DNS** (grey) are 10 times less numerous but have small SMA and short periods

Results

Masses

• High BH masses because of direct collapse at low metallicity

Masses

- High BH masses because of direct collapse at low metallicity
- Chirp mass $m_{\rm chirp} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
- Why chirp mass:
 - $u_{
 m GW} \propto m_{
 m chirp}^{-5/8}$, $h_{
 m GW} \propto m_{
 m chirp}^{5/3}$
 - So from observations we can reconstruct $m_{\rm chirp}$
 - In our model $m_{\rm chirp}$ strongly depends on Z
 - \Rightarrow Z-dependent BH mass model test
- But: in black chirp mass distribution of the best merger-candidates

Coalescence times

- Time to reach SMA=0 considering only GW emission
- $t_{GW} \propto rac{a^4(1-e^2)^{7/2}}{m_1m_2m_{
 m tot}}$ (Peters, 1964)
- GW emission: SMA shrink and orbit circularization
- Dynamical outlier: signal detectability depends on *e*

(Brown & Zimmerman, 2010)

- 7 DBHs with $t_{\rm GW} <$ 13 Gyr (0 for Z=Z $_{\odot}$)
- 17 DNSs with $t_{\rm GW} <$ 13 Gyr, 11 DNS mergers during the simulations

Conclusions

DCOBs during mergers **emits GWs** likely to be detected in the near future

- Metallicity is important:
 - Heavier BHs form at low Z
 - They tend to form DBHBs at early times
 - and these binaries are more stable: ⇒ DBHBs lifetimes are longer at low Z
- Dynamics is important
 - Dynamics enhances the formation of DCOBs: 97% of DBHBs come from exchanges
 - Dynamics **hardens** binaries and can modify the **eccentricity**
 - \Rightarrow increase detection probability

Further work

- Increase statistical sample
- Dependence on ICs parameters:
 - YSC mass from $10^3 \, M_\odot$ to $10^5 \, M_\odot$
 - concentration (i.e. central dimensionless potential W₀, from 3 to 9)
 - asymmetries (presence of initial sub-clumps)
 - primordial binary fraction (from 0 to 0.5)
- Multiple systems analysis (triples, ...)
- External tidal field

Thank you!