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“Try again. Fail again. Fail better.”
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Introduction

Gravitational lensing is a quite new and very powerful way of investigation of
the large scale distribution of matter in the universe. Distant galaxies sometimes
appear distorted, in a correlated way, because the foreground mass change the
trajectory of the light reaching us. These distortions can be useful to map the
mass distribution on large scales (Hayashi and White 2008). One of the methods
to make use of this is to compute the cross-correlation between the cosmological
structures and sub-structures with themselves or with the mass, and compare the
resulting structure knowledge with the lensing observations.

The goal of this work is to compute the correlation function between the dark
matter (DM) sub-haloes and the DM mass particles in the coordinate space. This
is useful because it permits to check the theoretical prevision (Giocoli et al. 2010)
of these quantities. Moreover the cross-correlation permits to compare different
models of aggregation for the matter and gives a statistical tool to characterize a
distribution of matter or the structures formed.

In this work the cross-correlation will be calculated on the result of some
simulation: the GIF and GIF2, the Millennium Simulation, the Millimillennium
Simulation and Millennium II Simulation. There are two ways to calculate the
cross-correlation, one in the Fourier space, the other in the configuration space.
In the Fourier space one has to create a grid over the particles distribution and
then calculate the power-spectrum (cross-spectrum), from which he can obtain
the CC. This method is subject to shot-noise. In case of a sparse distribution of
matter in a big space (box) the shot-noise could be big enough to make the results
useless. This happens especially in the case that we want to investigate small
scales: we would need a fine grid, which dimension make its representation
in memory difficult, almost empty because of the small number of particles to
check. Moreover to obtain the correlation from the spectrum it is necessary to



deconvolve and anti-transform it and this operation lead to a loss of information,
especially on the small scales. The second way, that we will follow is to calculate
the correlation in the configuration space counting the pairs at each distance.

Some considerations and tests lead us to choose Python as programming lan-
guage and a binary tree as data structure. Some optimization was done over
the original library, in particular for what regards the inclusion or exclusion
of nodes with some characteristics, based on the cache statistic and in case of
auto-correlation. In addition the slow distance calculation was substituted with
a faster function in Fortran imported as a shared library with f2py.

Some tests was made both for the speed of the code and for the correctness of
the results and some tuning was done to understand the best parameters (leafsize,
strategy, . . . ) to be used.

This dissertation is structured as follow: Chapter 1 introduce the standard
model of cosmological structure formation. In Chapter 2 we will treat the two
point correlation function, why it is important, how to calculate it and its con-
nection with the power spectrum. The following chapters are dedicated to the
presentation of the halo model (Chapter 3) and to the cosmological simulations
(Chapter 4). In chapter 5 we will introduce and explain what kd-tree are and how
they were developed. Chapter 6 treats the development of the main code used
in this work. Chapter 7 is dedicated the results of our work. In Chapter 8 we
presents some conclusions and propose further works.
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1
The StandardModel of Structure

formation

A little introduction on why the universe is as we see it.

1.1 Cosmological Principle

As of today, Standard Cosmology is based on the so called Cosmological Princi-
ple. This principle was introduced in the 1920’s by Einstein, while he was devel-
oping his General Theory of Relativity, and before any astronomical observation
could either confirm or refute it. The Cosmological Principle states that, on
scales large enough, the universe is spatially homogeneous and isotropic, i.e. it
has the maximum number of symmetries1. This assumption translates into pow-
erful constraints on the viable cosmological models. In this way we can develop
simplified models of the Universe starting from Einstein’s equations, otherwise
too difficult to be solved for an arbitrary matter distribution. The hypothesis of
a homogeneous and isotropic Universe was confirmed by Penzias and Wilson
in 1965 with the observation of the Cosmic Microwave Background (CMB), the

1In a more formal way, the Cosmological Principle states that the space-time has a maxi-
mally symmetric tridimensional sub-space.
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remnants of the hot and dense past of the Universe. Its spatial features convinced
the astronomers that the Cosmological Principle was valid.

To build a Universe model upon this idea and with tools offered by General
Relativity we have now to consider the geometrical properties of the Universe
as a fluid. The geometrical properties of a space are described by its metric, and
the more general one for an homogeneous and isotropic space is the Robertson-
Walker metric:

ds2 = (c dt)2
− a2 (t)

[
dr2

1 − kr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
(1.1)

where r is the comoving coordinate and a (t) is the scale factor. Einstein’s equa-
tions

Rµν −
1
2

gµνR =
8πG
c4 Tµν (1.2)

with the energy-momentum tensor

Tµν =
(
p + ρc2

)
UµUν − pgµν (1.3)

link the geometric properties of space-time with the energy momentum tensor
that describes the content of the universe.

In a space described by the Robertson-Walker metric, with mass-energy den-
sity at rest given by ρc2 and pressure p the equations (1.2) reduce to the Fried-
mann’s equations:

ä = −
4πG

3

(
ρ + 3

p
c2

)
(1.4)

ȧ2 + kc2 =
8πG

3
ρa2 (1.5)

where a = a (t) is the scale factor and t is the proper time. From Friedmann’s
equations we can extract the spatial curvature

k =

( ȧ
c

)2

[Ω (t) − 1] (1.6)

with the critical density given by

ρc =
3

8πG

( ȧ
a

)2

(1.7)

and density parameter
Ω (t) =

ρ

ρc
. (1.8)
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From the same equations we can obtain the proper distance between two points
from which we derive the Hubble parameter

H (t) =
ȧ
a

(1.9)

and, expanding the scale factor near t0, the deceleration parameter

q0 = −
ä0a0

ȧ2
0

. (1.10)

Einstein soon understood that the equations were not consistent with his idea:
a static universe can not be described only by an uniform distribution of matter
unless it has negative pressure. The solution was to add to the equations a term
called cosmological constant in a way that it did not change the covariant char-
acter of the equations. The consequences on the Friedmann equations were only
the substitution of pressure and density with equivalent effective quantities:

p̃ = p −
Λc4

8πG
(1.11)

ρ̃ = ρ +
Λc2

8πG
. (1.12)

When the expansion of the universe became evident, this term was abandoned.
However it has come back during the last 15 years, to describe the observed
accelerated expansion of the Universe.

1.2 Friedmann’s universes

Starting from the Friedmann equations and taking into account an adiabatic ex-
pansion given by

d
(
ρa3

)
= −3

p
c2 a2 da (1.13)

we can build simple models for the observed universe. These are rough but accu-
rate enough until the mean free path is much smaller than the physical considered
scales. The equation of state can be written as

p = wρc2 (1.14)

where the parameter w is a constant with values 0 < w < 1 (called Zed’dovich
interval): w = 0 represents a fluid with zero pressure and approximates quite



1.2 Friedmann’s universes 8

well any non-relativistic fluid or gas because mpc2 � kBT so the pressure is
relativistically non relevant. This kind of matter is conventionally called dust.
More in detail, a non relativistic fluid has pressure p = w (T ) ρc2 with w → 0,
a non-degenerate relativistic fluid in thermal equilibrium has equation of state
given by

p =
1
3
ρc2 (1.15)

For simplicity we will assume w constant with time.
Putting together the equation of state (1.14) and the equation describing the

adiabatic expansion (1.13) we have

ρa3(1+w) = ρ0a3(1+w)
0 = const (1.16)

from which we can obtain the relation between density and expansion for matter
and radiation. The energy density for the radiation decreases faster (the expo-
nent is 4 instead of 3) because one must consider the volume variation together
with the drop of energy caused by redshift. A fluid characterized by w = −1 is
equivalent to a Cosmological Constant, whose energy does not decrease with the
expansion of the universe.

Solutions and Friedmann models

Depending on the value we choose for w and Ω we obtain different analytic
solution for the Friedmann equations:

• Ω = 1 gives spatially flat universes, in particular if w = 0 the solution
is called Einstein-de Sitter universe and the expansion proceeds with con-
stant deceleration, reaching infinity at zero speed.

• If Ω < 1 we have the open universe for which the expansion proceeds
decelerates less and less, and is asymptotically linear with time.

• In the case of Ω > 1 the universe reaches a maximum size after which it
collapses

• Model in which the matter (dust) dominates are characterized by an equa-
tion of state with w = 0 and are flat, open or closed depending on the value
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of Ω: more, less or equal to 1. If Ω > 1 the solution has the parametric
form of a cycloid.

• Universes dominated by the radiation have w = 1
3 and are flat, open or

closed depending on the value of Ω.

1.3 Content of the universe

Now we consider the principal material components of the standard model for
the cosmic structures formation as they are presented in Tormen 2011.

Cold Dark Matter (CDM)

Most of the matter in the universe is non-baryonic “cold dark matter”, a colli-
sionless kind of matter that are not yet clearly identificated. It is “dark” because
it doesn’t absorb, emit o scatter any type of radiation but we can observe it only
through gravity. It is “cold” because we know that the particles that made it are
not relativistic at any interesting epoch. It is non baryonic because it does not
belong to the set of known particles that build up the ordinary matter but it is
provided by supersimmetric theories.

There are at least two issues that clearly show the need of the CDM: the for-
mation and the dynamic of galaxies. Without the DM both the cosmic structures
as we can see them now and the observed velocity profiles of galaxies are not
justifiable.

In the last years the most probable candidate seems to be the neutralino, a
particle of mass about 100 GeV. In extreme dense conditions it could annihilate
emitting gamma radiation.

The first cause of the introduction of the DM in the cosmological models
was to reconcile the low value of Ωb < 0.09 with the dynamic one Ωm ∼ 0.3
obtained from the mass estimation of spiral galaxies and galaxy clusters. The
high rotational velocities of the spiral galaxies and orbital velocities of galaxies
in the clusters show that the mass is much more than the contribution from the
visible, baryonic, mass Ω ∼ 0.3. The solution was to introduce a non baryonic
dark matter, gravitationally dominant.
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Baryonic Matter

The baryonic matter, also called ordinary matter, are made by the well know
particles such as protons, electrons, . . . Its abundance agree with the nucleosyn-
thesis provided by the Big Bang model, that is Ωb = 0.044 ± 0.003. A lit-
tle part of this constitutes the stars and galaxies we can see, the rest is in the
form of diffuse interstellar, intergalactic and intracluster medium. If we consider
an universe with different components the Ω in the previous equation became
Ωtot = ΩΛ + ΩDM + Ωb + Ωγ and whenever a component dominated the density
that component determined also the expansion.

1.4 Structure formation

As we mentioned in a previous section there is no way to have the structure we
can observe now in the universe using only the baryonic matter. If we define the
density fluctuation as

δ (x, t) ≡
ρ (x, t) − ρbg (t)

ρbg (t)
≡
δρ (x, t)
ρbg (t)

− 1 (1.17)

at recombination2 δ (a = arec) ∼ 10−5 � 1, proportional to the temperature fluc-
tuation.

In a universe composed only by baryonic matter (Ω = 1) we would have
δ (t) ∝ a ∝ t2/3, therefore

δa0 = δ (arec)
a0

arec
∼ 103δarec ∼ 10−2 (1.18)

contrary to what we observe. The existence of structures shows that fluctuations
are definitely non-linear, that is δ (a0) � 1. Because of δ ∝ a, in order to
have δ (a0) � 1 it is necessary that δ (arec) ≥ 10−3 but δT

T (arec) ∼ 10−3 is not
observed. What we need is a component whose perturbations can start to grow
before recombination, in order to reach non-linearity by the present time.

2We call recombination the period in the history of the universe when, due to expansion,
the temperature became low enough to let the electrons and the nuclei of the ionized matter
recombine. We also say that from there the universe become transparent because the light can
travel without being scattered by the free electrons.
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Cosmic structures formation

In the previous section we have seen that the DM leads the formation of the
cosmic structures. This happens because the growth of the first gravitational
instabilities, due to the quantum fluctuations, permits the collapse of regions of
DM and the formation of the first systems in gravitational equilibrium, the DM
haloes in a hierarchic way: first the smaller haloes collapse, then the aggregation
of those forms the bigger systems. This model is called Hierarchical Clustering.

The baryonic matter then follows the gravitational well of the DM: since
the gas is collisional it warms up for the adiabatic compressions and its kinetic
energy is converted into thermal energy by the shocks. The temperature in-
crease until that of the virial equilibrium and then diminishes due to the radiative
losses. The cooling let the gas condensate and begin to form the first molecular
clouds and then stars. Those start evolve processing the elements and producing
the heavier ones, possibly exploding as supernovae releasing in the interstellar
medium the new elements. The energy provided by the explosion heats the gas
giving rise to new stars that will eventually provide new materials. At the same
time the stars are affected by the gravitational potential and start to cluster in
galaxies.

Jeans instability

The gravitational instability can be better qualitatively understand with the Jeans
criterion. We can think about a uniform distribution of fluid (in this case, dark
matter) with little density fluctuations on all the scales. Let us now consider a
region where the dark matter is overdense compared to the average density, and
suppose that it is spherically symmetric, with radius R, mean density ρ, mass
M ∝ ρR3 and with typical particles speed v. Now, two processes compete in
determining the evolution of the system: the gravity among the particles tends
to collapse the region let it to became smaller and denser, the particles motion
diffuse the particles decreasing the overdensity.

We can see this balance in terms of energies. We consider the kinetic and
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potential energies:

Ek ∼
1
2

Mv2 (1.19)

Ep ∼ −
GM2

R
∼ −

GM
R
ρR3 ∼ −GMρR2. (1.20)

If the system has zero total energy, i.e. the two energies equals, we obtain

v2

2
= GρR2 (1.21)

R = RJ = v

√
1

2Gρ
(1.22)

where R j is the Jeans Radius. For R > R j the gravity overcome the kinetic
energy and the perturbation collapse, for R < R j the kinetic energy diffuse the
particles and the perturbation disappears.

We can obtain the same results considering the force or the characteristic
times.

Linear and non-linear evolution

Let us now consider those perturbations with R > RJ. Until δ � 1 the growth
of these perturbations is linear, so it is possible to construct a set of equations to
follow the evolution analytically. A simpler, qualitative, analysis can be done by
solving the Friedmann’s equations on scales R � RJ. The perturbation is now
a sphere of radius R and density ρ1 > ρc inside a universe with Ω ≡ 1, that is
ρbg = ρc. The sphere is equivalent to a universe with Ω > 1 surrounded by a
universe with Ω = 1 so we can consider the Friedmann’s equation

H2 (t) =
ȧ2 (t)
a2 (t)

=
8πG

3
ρbg (t) −

kc2

a2 (t)
(1.23)

in the two cases, obtaining

H2
bg =

8πG
3
ρbg (1.24)

H2
1 =

8πG
3
ρ1 −

c2

a2 . (1.25)
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We can examine the perturbation when the two Hubble constants have the same
values without loss of information, obtaining

δt ∝
1

a2 (t) ρbg (t)
� 1. (1.26)

Because in an Einstein-de Sitter’s universe with equation of state p = wρc2 we
have ρ (t) ∝ a−3(1+w) we obtain δ (t) ∝ a1+3w. This implies that when a < aeq the
radiation dominates, so δ (t) ∝ t and when a > aeq DM dominates and δ (t) = t2/3.

A more rigorous treatment (e.g. Cooray and Sheth 2002) combines the con-
tinuity equation

∂δ

∂t
+

1
a
∇ · (1 + δ) u = 0 (1.27)

and the Euler equation

∂δ

∂t
+ Hu +

1
a

[
(u · ∇) u + ∇φ

]
= 0 (1.28)

where the potential fluctuations due to density perturbations are given by the the
Poisson equations

∇2φ = 4πGρ̄a2δ (1.29)

and peculiar velocity
u = v − Hx. (1.30)

In the linear regime δ � 1 the equations can be combined in a second-order
differential equation

∂2δ

∂t2 + 2H
∂δ

∂t
− 4πGρ̄δ = 0 (1.31)

with two independent solutions, corresponding to the grow and decay modes
respect to the time. The growing solution has the form

δ (k, r) = G (t) δ (k, 0) (1.32)

where

G (r) ∝
H (r)
H0

∫ ∞

z(r)
dz′

(
1 + z′

) [ H0

H (z′)

]3

(1.33)

∼
5
2

Ωm (z) / (1 + z)
Ωm (z)4/7

−ΩΛ (z) + (1 −Ωm (z) /2) (1 + ΩΛ (z) /70)
. (1.34)
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For Ωm → 1 we have G ∝ a = (1 + z)−1.
When the amplitude δ of the fluctuation reaches δ = 1 the non-linear effects

become important and can not be neglected. Here the region corresponding to
the perturbation separates from the expansion of the universe and begins to col-
lapse to a virialized halo and we can not still describe the fluctuation as

δ (x, t) = δ(x,t0)
D (t)
D (t0)

(1.35)

where D (t) is the linear growth factor.
At the beginning the two main approaches were the Violent Relaxation and

the Secondary Infall. The first predict a mixing occurring in the phase space
with a chaotic result respect to the initial conditions while the second a gentle
shell collapse around a single perturbation. Both of them can be applied only to
a single structure and do not permit to find, for example, a mass function. Press
and Schechter provided a method to maintain part of the linear theory leading
to a simpler treatment. Their technique was then corrected and reformulated
in the excursion sets formalism (Bond et al. 1991). In the linear regime the
collapse occur when δ ∼ 1 but the true value is δNL,true. Nevertheless existence
of a one-to-one relation between the linear and the non linear trends permits to
have a linear value for δc ∼ 1.686 that correspond to the non-linear value at the
collapse. This means that when the non- linear halo collapse the linear theory
would present δlin = δc. The next step is to change the temporal dependence
from the fluctuations to the critical value of δ.
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2
The Two Point Correlation

Function

Here we present the two point correlation function, the motivation on why to
use it and the best way to estimate it.

The modern technologies permits huge observations (big surveys, deep ob-
servations, . . . ) as well as numerical simulations greater than ever before and
so we have now a lot of data with the positions of the point representing DM
particles, galaxies or halo centers or whatever is needed. What we need is a way
to characterize this distribution in order to know the interesting properties of it
and to compare this distribution with another, or with observative data or with
analytic models. If we are interested in the clustering properties of our data, one
of the most useful and most widely used tools is the spatial correlation function,
in this case, the two-point correlation function - TPCF ξ (r). In short, it measures
the probability of finding a pair of objects (mass points, halos, sub-halos, galax-
ies) separated by a certain distance r. In a discrete case, here we have a discrete
distribution of points, we have on average n points per volume unit. Following
Peebles 1980 the probability to find one point in the infinitesimal volume dV is

dP = n dV. (2.1)
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If dV doubles, dP doubles too.
The mean number of points in a finite volume V is

N = nV. (2.2)

The two point correlation function of this distribution is defined by the joint
probability of find two point with separation r:

d2P = n2 dV1 dV2
[
1 + ξ (r)

]
. (2.3)

Because we are dealing with an homogeneous and isotropic universe, ξ depends
only upon r. The probability is proportional to dV1 and dV2 because if one of
these doubles, it doubles also the probability. In case of Poissonian process on a
uniform random distribution the two probabilities are independent, so

d2P = n2 dV1 dV2 (2.4)

that is ξ ≡ 0. Then we can see that ξ (r) represents the excess (or defect) of
clustering of a distribution compared to a uniform Poissonian one. If ξ (r) > 0
we have a positive correlation, in case of −1 < ξ (r) < 0 we have anti-correlation.
In any case it must be ξ (r) > −1.

2.1 Correlation estimators

While the role of the TPCF is central, estimators for extracting it from a set of
spatial points are confusingly abundant in literature. The reason is partly due to
the lack of a clear criterion to distinguish between the estimators. As described
in Szapudi and Szalay 1998 the simple estimator

ξ (r) =
DD
RR
− 1 (2.5)

was widely used, where DD denotes the number of pairs at a given range of
separations and RR the number of random pairs, with the same separation, gen-
erated over a similar area as the data. In Landy and Szalay 1993 a new estimator
is proposed:

ξLS (r) =
DD − 2DR + RR

RR
(2.6)
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In this case, in the limit of weak clustering, the variance is proportional to 1/n2,
i.e. Poissonian in the pair counts whereas for all the other estimators the leading-
order term is 1/n with n the number of points in the survey.

A lot of other estimators are also available, and one could have smaller vari-
ance under certain circumstances, but it could have a bigger bias. Therefore,
before doing any numerical experiment it is a good thing to have an idea of
which estimator better suits our needs. The cumulative probability distribution
of the measured value lying within a certain tolerance of the true value is go-
ing beyond the concept of bias or variance, and it even takes into account any
non-Gaussian behavior of the statistics. This is the mathematical formulation of
the simple idea that an estimator that is more likely to give values closer to the
truth is better. Kerscher, Szapudi, and Szalay 2000 collects the different forms of
estimators and perform numerical experiments in several sub-samples of a large
simulation, determining the cumulative probability of measuring values close to
the true one and thereby ranking the different estimators.

The indicators were extracted from over 500 sub-samples of the Virgo Hub-
ble volume simulation cluster catalog. The real correlation function was de-
termined from the full survey in a 3000 Mpc/h periodic cube. The estimators
were ranked by the cumulative probability of returning a value within a certain
tolerance of the real correlation function. This criterion takes into account bias
and variance and it is independent of the possibly non-Gaussian nature of the er-
ror statistics. As a result, for astrophysical application, a clear recommendation
has emerged: the Landy&Szalay estimator is preferred in comparison with the
other indicators examined, with performance almost indistinguishable from the
Hamilton estimator.

Following Szapudi and Szalay 1998 they define the pair counts with a func-
tion Φ:

PDR (r) =
∑
x in D

∑
y in R

Φr (x, y) . (2.7)

The summation runs over coordinates of points in data set D and in the set
R of randomly distributed points. They also define the TPCF as Φr (x, y) =[
r ≤ d (x, y) ≤ r + ∆

]
where d (x, y) is the separation between two points and the

condition in brackets equals 1 when the condition holds and 0 otherwise. PDD

and PRR are defined analogously, with x and y taken entirely from the data and
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random samples, under the restriction that x , y. They also introduce the nor-
malized counts DD (r) = PDD (r) / [N (N − 1)], DR (r) = PDR (r) / (NNR) and
RR (r) = PRR (r) / [NR [NR − 1]] with N and NR being the total number of data
and random points in the survey volume.

The estimators considered are:

ξ̂n =
DD
RR
− 1 (2.8)

ξ̂DP =
DD
DR
− 1 (2.9)

ξ̂Hew =
DD − DR

RR
(2.10)

ξ̂Ham =
DD RR

DR2 − 1 (2.11)

ξ̂LS =
DD − 2DR + RR

rr
(2.12)

Respectively the natural estimator and the estimators by David&Peebles, Hewitt,
Hamilton and
Landy&Szalay (Landy and Szalay 1993).

To compare the estimators for typical cosmological simulations they used the
cluster catalogue generated from the ΛCDM Hubble volume simulation (Col-
berg et al. 1998). In order to investigate the effects of shape, clustering and
amount of random data used always one parameter at a time was varied. The re-
sult are that on small scales all the estimators are comparable, but on large scales
the LS estimator and the Hamilton estimator significantly outperform the rest,
showing the smallest deviations for a given cumulative probability. While the
two estimators yield almost identical results for an infinite number of random
points, the Hamilton estimator is considerably more sensitive to the number of
random points employed than the LS version is. From a practical point of view
the LS estimator is thus preferable.

So, the LS estimator emerges as the one they clearly recommend. These
considerations apply to volume-limited samples. When the correlation function
is estimated directly from a flux-limited sample the Hamilton estimator has the
advantage of being independent of the normalization of the selection function.
Szapudi and Szalay 1998 demonstrate that the LS estimator has superior shot
noise behaviour compared with the existing alternatives. Labatie et al. 2010
show that the LS estimator is nearly of minimal variance for a random distribu-
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tion (i.e. Poisson with no correlation) and that this estimator has second order
variance decay in 1/n2 with n being the number of data points. They also com-
pared the estimators regarding their sensibility to the fluctuation in the number of
galaxies n (i.e. the uncertainty in the mean density): Peebles-Hauser and David-
Peebles depend on the first order on that fluctuation whereas Hamilton and LS
have a second order dependence. As a consequence the variances of the first two
estimators have only a first order decay in the volume size whereas the two latter
estimators have a second order decay. They confirmed, with the simulations that
the Hamilton and the LS have much smaller variances. Thus we chose to use the
LS estimator to compute the TPCF in this work.

2.2 Cross-correlation implementation

There are essentially two ways to compute the TPCF: the first is in the Fourier
space, the second in the coordinate space. The first is achieved by gridding the
space and calculating the power spectrum. Its Fourier transform is the TPCF.
This way if affected by the shot noise and to minimized it the grid has to be as
fine as possible. To investigate the clustering on small scales in a big simulation
box the grid would be very big but also almost empty except in some, very dense,
areas. This is computationally inefficient and very difficult to handle. This is why
we choose to do this in the coordinate space.

In the coordinate space the TPCF is calculate through an estimator counting
the number of pairs at each distance bin. The trivial operation is simple but
computationally too expensive, so it is necessary to find an appropriate algorithm
to do this in a reasonable way.

In this work we choose to use Python and in particular the modules of the
Scipy project as it will be explained after. Scipy provides a lot of optimized
scientific Python modules, mostly written in C. Among them there is the KDTree
module which provide a base for the algorithm used in this work. The original
modules, thanks to its “open-sourceness”, was modified to fit better the need of
this work, in particular implementing some of the suggestion from the dedicate
articles. We added to the original model the possibility to prune the nodes tat
have been yet checked (for example, if we are doing self-correlation, the pair
1-3 is equal to 3-1) or the equal nodes. This was done assigning a tag to each



2.3 Cross-correlation and power spectrum 20

node and touching only the node couples with node1.tag>node2.tag. In case
of self.correlation if the nodes are the same the result is halved. We also tested
the possibility to change strategy for the counting; tests were made to decide
among six different strategies. We profiled the kd-tree algorithm and the entire
code and decide to change the way the distance was calculated, from Python to
Fortran, including the module with f2py. Other tests were made to find the best
leafsize, i.e. the best number of objects per leafnode, the best way to sort the
distance result when opening two leaves, if the traverse was sufficiently efficient
and if there were other functions to optimize.

Correlation error

The following expression

σξ(r) = (1 + ξ(r))/
√

DD (r) (2.13)

is the Poisson expression for the error. If we consider DD(r) which is the number
of data pairs on scale r , for Poisson statistics its uncertainty is

√
DD. The same

would be true for RR, the random pairs. So we can write

DD ±
√

DD

RR ±
√

RR
=

DD
RR

(
1 ±
√

DD
)(

1 ± /
√

RR
) (2.14)

and if you used many more randoms than data, then 1/
√

RR � 1/
√

DD so this
becomes (DD/RR)(1 ± 1/

√
DD). This means that the error on 1 + ξ = DD/RR

is
DD
RR

1
√

DD
=

1 + ξ
√

DD
(2.15)

but it might be more intuitively written as
√

DD/RR. Now, the error on ξ is the
same as that on 1 + ξ (there is no error on 1) so the error on ξ is 1+ξ√

DD
.

2.3 The cross-correlation, power spectrum and

cross-power spectrum

The density fluctuations field can be also studied decomposing it in Fourier se-
ries and considering the relative importance of each scale. This information is
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provided by the spectrum. At the beginning one can consider a simple functional
form for the spectrum, for example a power law P (k) ∝ kn. These are called also
scale-free spectra, because their logarithmic slope is the same at every scale,
so there is not a any relevant physical scale. n is called spectral index. The
scale-free spectra are used to describe the primordial spectrum or a local final
(evoluted) spectrum, processed by the micro-physics. Also the spectra coming
from the inflation are scale-free.

So, let us write the density fluctuation field δ (x) as superposition of plane
waves using the Fourier transform

δ (x) =
1

(2π)3

∫
δ̂ (k) exp (ik · x) d3k (2.16)

where

δ̂ (k) =

∫
δ (x) exp (−ik · x) d3x. (2.17)

Now, if we write the correlation function as

ξ (r) ≡ 〈δ (x) δ (x + r)〉 (2.18)

and consider the following definition for the power spectrum,

〈δ (k) δ
(
k′

)
〉 ≡ (2π)3 P (k) δ(3)

D
(
k + k′

)
(2.19)

(with δ(3)
D the tridimensional Dirac delta function) we obtain

ξ (r) =
1

(2π)3

∫
d3k

∫
d3k′P (k) δ(3)

D
(
k + k′

)
exp

[
ix ·

(
k + k′

)]
exp (ik · x)

(2.20)

=
1

(2π)3

∫
P (k) exp (ik · r) d3k (2.21)

so the power spectrum is the Fourier transform of the correlation function. This
is known as the Wiener-Khintchine theorem.

If we follow the same formalism and we substitute δ (x) in (2.18) with the
halo and matter density perturbation fields respectively we obtain the halo-matter
cross correlation

ξhm (r) = 〈δh (x) δm (x + r)〉 (2.22)
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and the Wiener-Khintchine theorem still holds, linking the cross-power spec-
trum and the cross correlation. This let us understand how that, in theory, it is
possible to obtain the same things both working in the Fourier space or in the
configurations space, but in practice change from one to the other reduce the
resolution because of the convolution operations. Depending on what one needs
(the power spectrum or the correlation) and what one already has it can be better
one method respect to the other.
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3
Halo model

Here we learn about the winning method in the last years to describe the
clustering of the dark matter structures and of its extension by Giocoli et al.

2010.

As presented in Cooray and Sheth 2002, the Halo Model (HM) is one of the
possible approach the description of the non-linear gravitational clustering of the
DM, characterized by having all the mass associated with virialized dark matter
haloes. The HM has its origins in a paper by Neyman, Scott et al., interested in
describing the spatial distribution of the galaxies. They thought that it would be
useful to think of the galaxies distribution as being made up of distinct clusters
with different sizes. Galaxies are discrete objects so the initial work described
the statistical properties of a distribution of discrete points. This description
require to know some parameters: the distributions of cluster sizes, the distribu-
tion of points around the cluster center and the description of the clustering of
the clusters but none of this elements were known at that time.

Now we know that much of the mass of the Universe is made of DM, ini-
tially rather smoothly distributed and that galaxies are biased tracers of the DM
distribution.

The initial fluctuation field was very close to a Gaussian random field and
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there were developed a perturbation theories from linear regime to higher or-
der to describe the gravitational clustering from those initial fluctuation. These
describe the evolution and mildly non-linear clustering of the DM but they fail
when the clustering became highly non-linear (typically on scales smaller than
a few Mpc). In perturbation theory we also don’t have a rigorous framework for
describing the differences between the clustering of the galaxies and that of the
DM.

Numerical simulations of the large scale structure clustering were developed
to study the non-linear evolution of the the DM distribution. These show that
initially smooth DM distribution evolves into sheets, filaments and knots. The
denser knots are called DM haloes. Simulations also show that the halo abun-
dance, spatial distribution and internal density profiles are closely related to the
properties of the initial fluctuation field. If we consider these haloes as the Ney-
man&Scott’s clusters, the formalism would provide a way to describe the spatial
statistics of the dark matter density field from the linear to the non linear regimes.

3.1 Halo structures and galaxies

As stated in Giocoli et al. 2010, for example, to know the non-linear dark-matter
power spectrum (PDM;NL(k)) is important for understanding the large scale struc-
ture of the Universe. Giocoli et al. analytically model the dark-matter power
spectrum (PDM(k)) and the cross-power spectrum (CPS) of the DM with the DM
haloes. This is an extension to the halo model formalism and includes realistic
substructure population within individual DM haloes and the scatter of the con-
centration parameter at fixed halo mass. This extension increases the predicted
power on the small scales and it is crucial for proper modeling the cosmological
weak-lensing signal due to low-mass haloes. The halo model approach can be
improved in accuracy increasing the number of ingredients calibrated from the
n-body simulations and from large galaxy redshift surveys which made possible
accurate studies of the large-scale cosmic structures.

Galaxies are believed to form and reside in DM haloes that extend much
beyond their observable radii. According to the standard scenario of structure
formation galaxies with dissimilar features reside in different DM haloes and
have experienced different formation histories. Some of them are located at
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halo centers while others orbit around it constituting the satellite population.
The clustering strength of a given galaxy population is related to that of the
DM haloes which host the galaxies and it is possible to provide an accurate
description of the clustering in the small-scale non-linear regime even if one
has no knowledge of how the haloes themselves are clustered. In this scenario
DM haloes form by gravitational instability from DM density fluctuation and
subsequent merge to form increasingly large haloes. Then gas follows the DM
density perturbation and once it reaches sufficiently high densities dissipative
process, shocks and cooling allows stars to form.

Although the main lines of this scenario are widely accepted, the details are
still poorly understood. Almost all analytic work based on the halo model ap-
proach assumes that haloes are spherically symmetric and that the matter density
distribution around the center is smooth. Numerical simulations show that haloes
are neither spherical nor smooth and about the 10% of the mass in cluster-sized
haloes is associated with sub-clamps. An accurate model of the substructures is
a necessary first step to modeling the small-scale weak gravitational convergence
and shear signal. At fixed redshift the bias (the ratio between the PS of the DM
haloes and of the DM) is an increasing function of the halo mass: more massive
haloes (forming later and having a lower concentration) are more biased com-
pared to less massive haloes (forming earlier and with a higher concentration).

Increasing the mass resolution in numerical simulations, recent studies have
found that cores of accreted satellites haloes survive in host haloes as orbiting
substructures. More massive haloes contains more sub-haloes than less massive
haloes: the number of substructures per host-haloes mass is universal and this
was confirmed also by other analysis. More massive haloes assemble their mass
quite recently, thus the time spent by their substructures under the influence of
the gravitational field of the host is shorter than in less massive hosts. This also
holds for haloes of similar mass but different formation times.

3.2 Non-linear power spectrum

In this article they show how the PDM;NL(k) can be decomposed when a realistic
model for the substructure mass function in host haloes and two models for their
spatial distribution are taken into account.
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In the halo model approach the two-point DM correlation function is

ξ
(
x − x′

)
= ξ1H

(
x − x′

)
− ξ2H

(
x − x′

)
(3.1)

where the first (or Poisson term) describes the contribution to the matter den-
sity from individual haloes (and thus we will call it 1H, that is one-halo term,
hereafter), while the second term (2H) describes the contribution from halo cor-
relations and x is the comoving coordinate. Both of them require knowledge of
the halo mass function and their DM density profile but the second term needs
also the two-point correlation function of haloes of different mass. This is dom-
inated by the two halo term and has to follow the linear correlation function, so
it is expressed conveniently by ξhh (r|M1M2) ∼ b (M1) b (M2) ξlin (r) where ξlin is
the dark matter linear auto-correlation.

Considering the contribution from substructures the 1H term can be fur-
ther decomposed into four contributions from the mutual correlations between
smooth and clump components1

1. Smooth-smooth correlation

2. Smooth-clump correlation

3. TPCF between different clumps in the same halo

4. TPCF between pairs in the same clump

The sub-halo concentration depends on its mass and also on its radial distance
from the host halo center. The mass-concentration relation adopted is consis-
tent with the one assumed for isolated host haloes, such that the sub-halo mass-
concentration relation, for distance larger then the virial radius of the host fol-
lows the halo mass-concentration relation.

Likewise the large-scale (2H) term can be further decomposed according
to the different correlations between smooth and clump components in three
contributions:

1. Smooth-smooth component correlation on large scales

1Here the smooth component is the matter bound to the halo but not in substructures, the
clump component are the particles in substructures.
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2. Smooh-clump correlation

3. Clump correlation

Both in the 1H term and in the 2H term the dominant contribution is due to
the pairs in which both members are in the smooth component. Smooth-clump
and clump-clump pairs never contribute more than 10% of the signal and they
became even less dominant at smaller scales (larger k).

The contribution from pairs within the same sub-clump increases with k
reaching values of order 50% at k ∼ 104.

3.3 Cross spectra and cross-correlations

Let us consider now the cross correlation (CC) between haloes and mass as well
as between substructures and mass. On the small scales we consider the two
contribution to 1H term from the center of the halo, assuming that the matter is
divided into smooth and clumpy components. The halo-smooth self-correlation
and the halo-clump self-correlation can be write in the Fourier space as

PX
1H, sHs (k, z) =

∫
M
ρ̄

n (M, z)
∫

Msm

M
u (k|c (Msm)) p (c|M) dc dM (3.2)

PX
1H,Hc (k, z) =

∫
M
ρ̄

n (M, z)
∫

Us (k, c)Ic(M) (k, z) p (c|M) dc dM (3.3)

where u (k|c (Msm)) and Us (k, c) are the Fourier transforms of the density pro-
files of the smooth component and of the clump distribution respectively. Msm is
the smooth mass of the host halo.

Regarding the contribution to large scales (2H term) the idea is the same:
we imagine sitting at the center of the host halo and cross-correlate with the
smooth and the clumpy components of a distant halo. In this case we also have
to take the halo bias relative to the DM distribution into account, as well as the
PDM;NL(k).

The smooth and the clump cross-correlation PS are:

PX
2H,Hs (k, z) =

Plin (k, z)
n̄h

∫
n (M, z) b (M, z) dMSI (k, z) (3.4)

PX
2H,Hc (k, z) =

Plin (k, z)
n̄h

∫
n (M, z) b (M, z) dMCI (k, , z) . (3.5)
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Now we have to place ourselves at the center of a clump and determine the
cross-correlation on small scales.

The 1H term will be the sum of three components:

1. the self correlation (SC) with the substructure mass

2. the CC with the mass in the other substructures contained in the same host
halo

3. the CC with the smooth component

We obtain

PX
1H, S s (k, z) =

1
n̄s

∫
M
ρ̄

n (M, z)
∫

Msm

M
u (k|c (Msm)) Us (k|c (M)) Ns (c (M) , z) p (c|M) dc dM

(3.6)

PX
1H, S c (k, z) =

1
n̄s

∫
M
ρ̄

n (M, z) U2
s (k|c (M))Ic(M) (k, z) Ns (c (M) , z) p (c|M) dc dM

(3.7)

PX
1H, sS c (k, z) =

∫
M
ρ̄

n (M, z)
∫
Ic(M) (k, z) p (c|M) dc dM. (3.8)

For the 2H term we have two equations analogous to those of the halo-matter
cross-correlation and we need to integrate over the substructure mass function:

PX
2H, S s (k, z) =

Plim (k, z)
n̄s

∫
n (M, z) b (M, z)

∫
Ns (c (M) , z) Us (k|c (Mz)) p (c|M) udc dMSI (k, z)

(3.9)

PX
2H, S c (k, z) =

Plin (k, z)
n̄s

∫
n (M, z) b (M, z)

∫
Ns (c (M) , z) Us (k|c (M)) p (c|M) dc dMCI (k, z) .

(3.10)

The cross-correlation between substructures and mass is sensitive to the choice
of the radial sub-clump distribution. In the model by Hayashi&White the 1H
term is due to the dark matter density profile of the host halo, while the two halo
term by the product between bias factor and the mass autocorrelation function
predicted by the linear theory.

As presented in Section 2.3 the we can also obtain the same information
in another way. Let us consider the configurations point of view (Hayashi and
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White 2008). The cross-correlation between halo centers and mass ξhm is the
spherically averaged halo density profile averaged over all the haloes in the
dataset. Its shape is composed by two parts, the one-halo and two-halo terms
presented in the previous sections. They are dominated by the particles within
the same halo or in different haloes respectively.

It can be also easily shown that ξhm on large scales follows closely the mass
auto-correlation function with a mass-dependent offset in amplitude, the halo
bias factor b (M).

So we can write:

ξhm (r; M) =

 ξ1h (r) if ξ1h (r) � ξ2h (r)

ξ2h (r) if ξ1h (r) � ξ2h (r)
(3.11)

with

ξ1h (r) =
ρhalo (r; M) − ρ̄m

ρ̄m
(3.12)

ξ2h (r) = b (M) ξlin (r) . (3.13)

The one-halo term has been studied extensively and it is well fitted by the NFW
profile or some modified forms of it.

As presented before, regarding the substructures-matter cross correlations,
the contributions are:

• for the 1H term the correlation with the substructure mass, the mass in
other substructures of the same halo and the correlation with the smooth
component

• for the 2H term we have only two contributions, the one from the correla-
tion with the smooth component and the one from the correlation with the
clump one.

In this work we do not distinguish the contributions from the smooth and the
clump component, they appear as a single contribution.
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Figure 3.1: Halo and subhalo-mass cross-correlation at redshift z = 0.1 (top)
and z = 1 (bottom) from Giocoli et al. 2010. In each panel can be seen the
contribution of haloes and substructures and mass, respectively.
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4
Simulations

In this chapter we will take confidence with the concept of simulation and we
would have a look to one of the most important simulation of the

astrophysics done till now.

A good introduction on what is a simulation and its implication on the mod-
ern scientist trade is provided by Karniadakis and Kirby 2003. In particular the
focus on how the new technologies changed the scientist workflow and skills.
Indeed, although until not so many years ago the work of the scientists was con-
nected with the observations in a laboratory (or at the telescope) and/or with
paper and pencil. Some rudimentary machines were available to help the counts
sometimes. In few years those machines became powerful enough not only to
became a fundamental part of the analysis but also to permit the scientist to
recreate a numerical model of the system under study and let it evolve into the
computer.

The modern scientist then often spend more and more time in front of a
laptop, a workstation, or a parallel supercomputer and less and less time in the
physical laboratory or in the workshop. Sometimes the old approach of “cut-
and-try” has been replaced by “simulate-and-analyse in several disciplines, from
the astrophysics, to particle physics, to biology. As a side effect, the modern
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scientist must be able to use the new tools, so he have to join together the knowl-
edge in his field of research with the computer programming.

In the classical scientific approach, the physical system is first simplified
and set in a form that suggests what type of phenomena and processes may be
important, and correspondingly what experiments are to be conducted. In the
absence of any known-type governing equations, dimensional inter-dependence
between physical parameters can guide laboratory experiments in identifying
key parametric studies. The database produced in the laboratory is then used to
construct a simplified “engineering” model which after field-test validation will
be used in other research, product development, design, and possibly lead to
new technological applications. This approach has been used almost invariably
in every scientific discipline, i.e., engineering, physics, chemistry, biology, etc.

The simulation approach follows a parallel path but with some significant
differences. First, the phase of the physical model analysis is more elaborate:
the physical system is cast in a form governed by a set of partial differential
equations, which represent continuum approximations to microscopic models.
Such approximations are not possible for all systems, and sometimes the mi-
croscopic model should be used directly. Second, the laboratory experiment is
replaced by simulation, i.e., a numerical experiment based on a discrete model.
Such a model may represent a discrete approximation of the continuum partial
differential equations, or it may simply represent a statistical representation of
the microscopic model. Finite difference approximations on a grid are examples
of the first case, and Monte Carlo methods are examples of the second case. In
either case, these algorithms have to be converted to software using an appropri-
ate computer language, debugged, and run on a workstation or a parallel super-
computer. The output is usually a large number of files of a few Megabytes to
hundreds of Gigabytes, being especially large for simulations of time-dependent
phenomena. To be useful, this numerical database needs to be put into graphical
form using various visualization tools. Visualization can be especially useful
during simulations where interactivity is required as the grid may be changing
or the number of molecules may be increasing.

The question is if this is a new science, and how one could formally obtain
such skills. Moreover, does this constitute fundamental new knowledge or is it
a “mechanical procedure” an ordinary skill that a chemist, a biologist or an en-
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gineer will acquire easily as part of “training on the job” without specific formal
education. It seems that the time has arrived where we need to reconsider bound-
aries between disciplines and reformulate the education of the future simulation
scientist, an inter-disciplinary scientist.

Let us re-examine some of the requirements following the various steps in
the simulation approach. The first task is to select the right representation of the
physical system by making consistent assumptions in order to derive the gov-
erning equations and the associated boundary conditions. The conservation laws
should be satisfied; the entropy condition should not be violated; the uncertainty
principle should be honored. The second task is to develop the right algorithmic
procedure to discretize the continuum model or represent the dynamics of the
atomistic model. The choices are many, but which algorithm is the most accu-
rate one, or the simplest one, or the most efficient one? These algorithms do
not belong to a discipline! The third task is to compute efficiently in the ever-
changing world of supercomputing. The fourth task is to assess the accuracy of
the results in cases where no direct confirmation from physical experiments is
possible such as in nanotechnology or in biosystems or in astrophysics. Relia-
bility of the predicted numerical answer is an important issue in the simulation
approach as some of the answers may lead to new physics or false physics con-
tained in the discrete model or induced by the algorithm but not derived from the
physical problem. Finally, visualizing the simulated phenomenon, in most cases
in three-dimensional space and in time, by employing proper computer graphics
(a separate specialty on its own) completes the full simulation cycle. The rest of
the steps followed are similar to the classical scientific approach.

4.1 The GIF and GIF2 Simulations

The GIF simulation (Diaferio, White, and Kauffmann 1999) is a set of N-body
simulations developed to follow the formation and evolution of galaxies and
their clustering properties. They use dissipationless simulations to track the for-
mation and merging of dark matter haloes as a function of redshift and some
prescriptions taken from semi-analytic models of galaxy formation for for gas
cooling, star formation, supernova feedback and the merging of galaxies within
the haloes. One of the motivation of the simulation was to test the theories to
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estimate cosmological parameters, such as the density Ω,or the cosmological
constant Λ. The simulations were run as a part of the GIF project and the code
used is called Hydra. A set of four simulations with N = 2563 and with different
cosmological parameters was run but in this work we were interested in the one
with ΛCDM cosmology and the following parameters:

• Ωm(z = 0) = 0.3

• ΩΛ(z = 0) = 0.7

• H0 = 70 km/s/Mpc

• σ8(z = 0) = 0.9

• gravitational softening = 30 kpc/h cubic spline

• boxsize = 141.3 Mpc/h on a side

• Npart = 2563 = 16777216

• particle mass = 1.4x1010M�/h

The Gif2 simulation (Gao, White, and Jenkins 2004) was developed to investi-
gate the subhalo populations of dark matter haloes in the concordance ΛCDM
cosmology. The simulation was performed with Hydra in the first part and fin-
ished using GADGET to save computational time.

The simulation parameters are

• Ωm(z = 0) = 0.3

• ΩΛ(z = 0) = 0.7

• H0 = 70 km/s/Mpc

• σ8(z = 0) = 0.9

• gravitational softening = 6.6 kpc/h cubic spline

• boxsize = 110 Mpc/h on a side

• Npart = 4003 = 64000000

• particle mass = 1.73x109M�/h
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4.2 The Millennium Simulation

The Millennium Simulation (MS) is one of the bigger and most important sim-
ulation ever made in astrophysics. Its main purpose is to study the formation of
the structures now visible in the Universe. Its based on the ΛCDM model. This
model, together with the theory of cosmic inflation, makes a clear prediction for
the initial conditions for the structure formation and predicts that structures grow
hierarchically through gravitational instability. Testing this model requires that
the precise measurements delivered by galaxy surveys can be compared to ro-
bust and equally precise theoretical calculations. The MS, presented in Springel
et al. 2005, is a simulation of the growth of the DM structure using 21603 par-
ticles, following them from redshift z = 127 to the present in a cube-shaped
region 2230 billions light-years on a side. In post-processing they also follow
the formation and evolution of the galaxies and quasars.

The principal goals of all of these surveys are to shed light on how galaxies
form, to test the current model for the growth of cosmic structure and search for
signatures that may clarify the nature of DM and dark energy.

Two problems have so far precluded such predictions:

• accurate estimates of clustering require simulations of extreme dynamic
range, encompassing volumes large enough to contain representative pop-
ulation of rare objects (such as rich galaxy clusters or quasars), yet resolv-
ing the formation of individual low-luminosity galaxies

• critical aspects of galaxy-formation physics are uncertain and beyond the
reach of direct simulation: for example the structure of interstellar medium
and its consequences for star formation and for the generation of galac-
tic winds, the ejection and mixing of heavy elements, and AGN (active
galactic nuclei) feeding and feedback effects that must be treated by phe-
nomenological models whose form and parameter are adjusted by trial and
error as part of the overall data-modelling process

While the initial, linear growth of density perturbation can be calculated ana-
lytically, the collapse of fluctuations and the subsequent hierarchical build-up of
structure is a highly non-linear process that is easy accessible only through direct
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numerical simulation. The dominant mass component, the CDM, is assumed to
be made of elementary particles that currently interact only gravitationally, so
the collisionless DM fluid can be represented by a set of discrete point particles.
This representation as a N-body system is a coarse approximation whose fidelity
improves as the number of particles of the simulation. This high-resolution simu-
lation is called the “Millennium Simulation” because of its size, it follows ∼ 1010

particles from z = 127 to z = 0 in a cubic region of 500 Mpc/h and it offers a
substantially improved spatial and time resolution within a large cosmological
volume.

The mass distribution in a ΛCDM universe has a complex topology, often
described as a “cosmic web”. On larger scales, there is a little discernible struc-
ture and the distribution appears homogeneous and isotropic. Zooming in, the
final image reveals several hundred DM substructures, resolved as independent,
gravitationally bound objects orbiting within the cluster halo. These substruc-
tures are the remnants of DM haloes that fell into the cluster at earlier times.
At present, there are about 18 million haloes above a detection threshold of 20
particles; 49.6% of all particles are included in these haloes. These statistics pro-
vide the most precise determination to date of the mass function of CDM haloes.
In the range that is well sampled in the MS (z ≤ 12, M ≥ 1.7 × 1010M�/h) the
results are remarkably well described by an analytic formula derived from fits to
previous simulations.

On large scales and at early times, the mode amplitudes of the dark matter
power spectrum grow linearly, roughly in proportion to the cosmological expan-
sion factor. Non-linear evolution accelerates the growth on small scales when
the dimensionless power ∆2 (k) = k3P (k) /

(
2π2

)
approaches unity (the power

spectrum P (k) measures the variance of the density fluctuations on the scale of
wave-number k). This regime can only be studied accurately using numerical
simulations. In the Millennium Simulation they are able to determine the non-
linear power spectrum over a larger range of scales.

N-body simulations of CDM universes are now of such size and quality that
realistic modelling of galaxy formation in volumes matched to modern surveys
has become possible.

The Millennium Simulation was carries out with a customized version of the
GADGET-2 code, using the TreePM method for evaluating gravitational forces.
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This is a combination of a hierarchical multipole expansion, or tree algorithm,
and a classical Fourier-transform particle-mesh method. The calculation was
performed on 512 processors of an IBM p690 parallel computer at the Comput-
ing Centre of the Max-Planck Society in Garching, Germany, It used almost all
of the 1 terabyte of physically distributed memory available. It required about
350000 processor hours of CPU time, or 28 days of wall-clock time. The mean
sustained floating-point performance (as measured by hardware counters) was
about 0.2 teraflops, so the total number of floating-points operations carried out
was of the order of 5 × 1017.

The cosmological parameters of their ΛCDM simulation are Ωm = ΩDM +

Ωb = 0.25, Ωb = 0.045, h = 0.73, ΩΛ = 0.75, n = 1 and σ8 = 0.9. Ωm de-
notes the total matter density in units of the critical density for closure ρcrit =

3H2
0/ (0πG). Similarly Ωb and ΩΛ denote the densities of baryons and dark en-

ergy at the present day. The simulation volume is a periodic box of size 500
Mpc/h and individual particles have mass of 8.6 × 108h−1 M�. This volume is
large enough to include interesting rare objects but still small enough that the
haloes of all luminous galaxies brighter than 0.1L (where L is the characteristic
luminosity of galaxies are resolved with at least 100 particles).

A smaller test version of the Millennium Run, the Milli-Millennium Simu-
lation, was also performed. This simulation used the same cosmology and res-
olution as the Millennium Simulation but in a 62.5 Mpc/h box with 19,683,000
particles. We used the data from this simulations to check the code in the early
stages.

4.3 The Millennium II Simulation

The Millennium-II Simulation, MSII, (Boylan-Kolchin et al. 2009) has the same
parameters of the MS but it was carried out in a periodic cube of 100 Mpc/h so it
has 5 times better spatial resolution and 125 better mass resolution. Comparing
the results of the two simulations demonstrates the very good convergence in DM
statistics such the halo mass function, the sub-haloes abundance distribution and
so on. Putting together this two simulations one can obtain precise results on
these statistics over an unprecedented range of scales. Thus we are investigating
the properties of the structures and substructures at small scales we decided to
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use the MSII because of its better spatial resolution on those scales.
Opposite to the simulations trend after the MS (bigger volume at fixed par-

ticles number - it reduces the computational effort) the MSII focused on smaller
volumes. At fixed particles number this led to a higher mass resolution but it
requires much more computation effort. The higher mass resolution therefore
is of great interest in galaxy formation, with relevant mass scales smaller than
the scales of large clustering. The evolution of low-mass galaxies is important
because they prepare the initial condition for the more massive system formed
later.

The MSII high resolution is useful also for the study of the DM substructures
in DM haloes.

In particular this simulation follows 21603 particles in a box of side length
100 Mpc/h and was run with GADGET-3 code.

4.4 Gadget and the database

Gadget (Springel 2005), the code used for these simulations, is based on a com-
bination of a tree algorithm, also called hierarchical multipole expansion, and
a classical Fourier transform particle-mesh method. The code decompose the
simulation volume into compact domains, each served by one processor, us-
ing a space filling Peano-Hilbert curve divided into segments. This choice also
minimize the communication between the different processors during the short-
range forces computation. During the execution of the code some calculation are
performed to characterize the simulation output, such as the dark matter auto-
correlation. Moreover, in each output of the simulations, haloes are identified
using a friend-of-friend groupfinder and each FOF halo is decomposed into lo-
cally over-dense and self-bound substructures (subhaloes) using the SUBFIND
algorithm. In addition they use semi-analytic methods to simulate the evolution
of galaxies population taking care of the gas cooling, the star formation and so
on (Hayashi and White 2008)

The results of the two Millennium simulations are stored in a SQL database
(Lemson 2006) accessible from Internet. The access to the complete particles
positions database is limited because of its dimension. The database is organized
in tables and the contents are indexed in more than one way to permit a faster
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access to the data. Some view, functions and stored procedures are yet available
to the users, for example the possibility to search for particles in spherical ball
around a position.
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Figure 4.1: Two slice of the Millennium II simulations. It can be seen the pres-
ence of a big cluster in the second images that slowed down the counting opera-
tions.
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5
Trees

In this chapter we will understand what a kd-tree is, why it was created and
the basics of the kd-tree optimization.

Pairwise distance computations are of fundamental importance in many fields,
not only in astronomy and cosmology. They are often used in machine learning,
graphics computation and so on. A particular class of this type of problems is
called all-query, all-point-pairs or N-body-like problems (Ram et al. 2009, Gray
and Moore 2001). In particular, as we stated above, the two-point correlation
function can be thought of roughly as a measure of the clumpiness of a set of
points and it is easily defined as the number of pairs of points in a dataset which
lie within a given radius r of each other.In this type of problems we have the
interaction between a reference of two sets of points of size O (N). The direct
solution requires a total running time ofO

(
N2

)
. This type of dependence is often

too high to permit the computation. The general approach usually followed to
solve this problem is to reduce the number of distance computation. One of the
most famous problem that need this approach is the nearest neighbours problem
(NNP). Indeed one of the first appearance of kd-tree was in 1977 by Freidman,
Bentley, and Finkel 1977 to solve the “best matches”, or nearest neighbours
problem. The problem is to find, among big datasets, the m closest matches or
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nearest neighbours to a given query record according to some dissimilarity or
distance measure. Formally, given a dataset of N data-points (each described by
K keys) and a dissimilarity measure or distance D we have to find the m matches
closest to a query point (non necessary in the dataset). The most famous prob-
lem of this kind is the so called “post-office problem”1. The solution proposed
by Freidman, Bentley, and Finkel 1977 require a computation proportional to
kN log N. The expected number of points examined in each search is indepen-
dent of the dataset size and the expected computation to perform each search is
proportional to log N.

Structures use for associative searching

The first, rough, technique they present for solving the NNP is the cell methods.
The k-dimensional key space is divided into small identically sized cells. A
spiral search of the cells from any query record will find the best matches of that
record. This is extremely costly in terms of space and time, especially when the
dimensionality of the space is large.

The key point, in every strategy, is to minimized the number of record exam-
inated. In Freidman, Bentley, and Finkel 1977 the authors quickly presents some
of the strategies, including clustering techniques (using the triangle inequality),
the formation of a projection of the records onto one or more keys keeping a
linear list of these keys (this does not require to satisfy the triangle inequal-
ity). The expected computation required for the last strategy is proportional to
km1/kN1−1/k. Other ways use binary keys with the Hamming distance2 or the
Voronoi diagram3 in the special case of only two keys and Euclidean space. The
last case can search for best matches in worst case of O

[
(logN)2

]
after a dataset

1The post-office problem is a problem presented by Donald Knuth in The Art of Computer
Programming in 1973. The problem is about assigning to a residence the nearest post office
among all.

2In information theory, the Hamming distance between two strings of equal length is the
number of positions at which the corresponding symbols are different. Put another way, it mea-
sures the minimum number of substitutions required to change one string into the other, or the
number of errors that transformed one string into the other. For example the Hamming distance
between “toned” and “roses” is 3.

3In mathematics, a Voronoi diagram is a special kind of decomposition of a metric space
determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set
of points.



43 Trees

organization that requires a storage proportional to N and a time proportional to
O

(
N log N

)
.

The last strategy is proposed by Finkel and Bentley (Finkel and Bentley
1974) and involve a tree structure, called quad-tree for the storage of the keys.
It is a generalization of the binary tree for storing data on single keys. Bentley
develops a different generalization of the same one-dimensional structure, called
kd-tree. This paper introduces an optimized kd-tree for the problem of finding
best matches. This data structure is very effective in partitioning4 the points in
the dataset so that the average number of examinations involved in searching the
set is quite small. This method can be applied with a wide variety of dissimi-
larity measures and does not require that they obey the triangle inequality. The
storage required for data organization is proportional to N while the computa-
tional is proportional to kN log N. For large datasets the expected number of
examinations required for the search is shown to be independent of the dataset
size, N. The time spent in descending the tree during the search is proportional
to log N so that the expected time required to search for best matches with this
method is proportional to log N.

5.1 Definition of KD-Tree

A kd-tree is a generalization of the simple binary tree used for sorting and search-
ing, in particular the kd-tree is a binary tree in which each node represents a
subset of the dataset. The root of the tree represents the entire dataset. Each non
terminal node has two sons or successor nodes. These successor nodes repre-
sents the two subsets defined by the partitioning. The terminal nodes, also called
leaves, represent mutually exclusive small subsets of the data records, which
collectively form a partition of the data space. The leaves are originally called
by Freidman buckets.In the case of one-dimensional searching a point is repre-
sented by a single key and a partition is defined by some value of that key. All
points in a subset with key values less than or equal to the partition value belong
to the left son while those with a larger value belong to the right son. The origi-
nal kd-tree proposed by Bentley chooses the discriminator for each node on the

4We can consider a partition the way we divide the space of the data.
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basis of its level in the tree cycling through the keys in order. The paper (Freid-
man, Bentley, and Finkel 1977) deals with choosing both the discriminator and
the partition value for each subset, as well as the leaves size, to minimize the
expected cost for searching for the nearest neighbours.

5.2 The search algorithm

The KD-Tree data structure provides an efficient mechanism for examining only
those points closest to the query point, greatly reducing the computation required
to find the best matches. The search algorithm is in general a recursive proce-
dure. The first invocation pass the root-node of the tree and the query point to
the recursive function. The domain of the node, that is, the geometric boundaries
that delimit the subset represented by the node are available in some way or they
can be calculated. The domain of the root node is defined to be plus and minus
infinity on all the keys in the early implementation but now is usually the mini-
mum “box” containing the data. The geometric boundaries at each level are de-
termined by the partitions defined at the nodes above it in the tree. At each node
the partition divides the current sub-file and set the limits for the discriminator
key in the new sub-files. These limits define a volume in the multidimensional
key-space containing the sub-file. This volume is smaller for nodes deeper in the
tree. If the node under investigation is terminal then all the points in the leaf are
examined. If the node under investigation is not terminal the recursive procedure
is called for the nodes representing the subset.

The optimized KD-Tree

The goal of the optimization is to minimize the expected numbers of records
examined with the search algorithm. The parameters to be adjusted are the dis-
criminating key number, the partition value at each non-terminal node (innern-
ode) and the dimension of the leaves.

The solution to the optimization will in general depend upon the distribution
of query points in the data key space. In practice it depends also on the hardware
to be used, i.e. the memory and the CPUs available, and on the speed of the
various component. Usually one has no knowledge of this in advance. Thus
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they propose a procedure that is independent of the distribution of queries and
only uses information contained in the dataset. Such a procedure will be seen
to be good for all possible query distribution but will not be optimal for any
particular one.

A second restriction is that the solution values for discriminating key number
and partition value at any particular node depended only on the sub-file repre-
sented by that node. This restriction is necessary so that we can define the kd-
tree recursively avoiding a general binary tree optimization that will be require
a non-polynomial time complexity. Under these two restriction they provide a
prescription for choosing the discriminating key and partition value at each in-
nernode. Because the information provided to a binary choice is maximal when
the two alternatives were equally likely each data point should have had equal
probability of being on either side of the partition. This criterion dictates that we
locate the partition at the median of the marginal distribution of the key values,
irrespective of which key is chosen for the discriminator. The search algorithm
can exclude some subsets if the distance to the partition is greater than the radius
of the query ball. The probability of the partition intersecting the ball is least (av-
erage over all possible query location) for that key which exhibited the greatest
spread or range in values before the partitioning. The prescription for optimizing
the kd-tree, then, is to choose at every innernode the key with the largest spread
in values as the discriminator and to choose the median of the discriminator key
values as partition. In practice Arya et al. 1998 state that can be a good idea
chose split the partition key in two halves.

Analysis of performance

The storage required for data organization is proportional to the data size N.
The discriminating key number and partition value must be stored for each non-
terminal node. The number of innernodes is dN/be − 1 where b is the number
of points in each leaf. The computation required to build the kd-tree is easily
derived. At each level of the tree the entire set of key values must be scanned.
Thus requires a computation proportional to kN. The depth of the tree is log N so
the total computation to build the tree is proportional to kN log N. The expected
time performance of the search is not so easily derived but with some geometric
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arguments it is possible to reach some results. First, to minimize the number
of bucket examined every bucket should contain only one record. Then, it is
possible to demonstrate that choosing the median for the partitioned ensures that
each leaf will contain very nearly b points, where b is the maximum leaf size.
More, choosing the key with the largest spread in values at each node ensures
that the geometric shape of these leaf will be reasonably compact. In fact the
expected shape of these buckets is hypercubical with edge length equal to the
kth root of the volume of the space occupied by the leaf. The edges are parallel
to the coordinate axes. The effect of the optimized kd-tree partitioning, then,
is to divide the coordinate space into approximately hypercubical subregions,
each containing very nearly the same number of points.Another important result
is that the expected number of points examined is independent of the file size
N but it can depend on the distribution of the data points. The goal is hence
to minimized the leaves overlapped for a small area by the query-ball. This is
because we would analyze a big leaf only to find few interesting data point in
the query-ball. Then partitioning should be as fine as possible. Ultimately it is
possible to demonstrate that the expected search time for the m best matches is
proportional to log N.

Implementation

Till here the discussion is focused on the number of records examined as the sole
criterion for performance evaluation of the algorithm. This has the advantage
that evaluation is independent of the details of implementation and the computer
upon which the algorithm is executed. Although the computational requirements
of the algorithm are strongly related to the number of records examined, there
are other considerations including the consideration required to build the kd-
tree and the overhead computation required to search the tree. In the overhead
required to search the tree it must be considered the calculation required to find
the nodes intersected by the query-ball. This calculation must be performed at
each innernode visited in the search. It is then more computationally efficient to
have larger leaf sizes even thought this increase the number of records examined.
The final result is a balance between all of this consideration, trying to find the
minimum of the combination of all the contributes.
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Implementation on secondary storage

Efficient operation on the kd-tree algorithm does not require that all of the leaf
reside in fast memory. During the preprocessing these data can be arranged on
an external storage device so that records in the same leaf are stored together.
Leaves close together in the tree can be stored similarly. Since the search al-
gorithm examines a small number of leaves on the average, there will be few
access to the external storage for each query. For extremely large files it is not
even necessary that the entire kd-tree reside in fast memory. Only the top lev-
els of the tree need to be in fast memory, the lower levels can be stored on an
external device under an arrangement that keeps innernodes close to their sons.

5.3 KD-Tdree optimization

Gray and Moore 2001 presents a suite of other geometric considerations which
are applicable in principle to any “N-body” computation. Those algorithms ex-
hibit favorable asymptotic scaling and are empirically several orders of magni-
tude faster than the naive computation even for small datasets.First the authors
stress the importance of the mrkd-tree, that is a conventional kd-tree decorated at
each node with extra statistics about the node’s data, such as their count, centroid
and covariance. The older techniques can be summarized as follows.

Quadratic algorithm. The most naive approach is to simply compare each point
to each other one, incrementing a count if the distance between them is less
than r. This has O

(
N2

)
cost, unacceptably high for problems of practical

interest.

Binning and gridding algorithms. It is like the “cell” method presented early.
The idea of binning is simply to divide the data space into a fine grid
defining a set of bins, perform the quadratic algorithm on the bins as if
they were individual data, then multiply by the bin sizes as appropriate to
get an estimate of the total count. The idea of gridding is to divide the data
space into a coarse grid, perform the quadratic algorithm within each bin
and sum the result over all bins to get an estimate of the total count. These
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are both of course very approximate methods yielding large errors. They
are not usable when r is small or r is large, respectively.

Range-searching with a kd-tree. The idea is that we will make each data point
in turn a query point and then execute a range search of the kd-tree to find
all other points within distance r of the query. A search is a depth-first
traversal of the kd-tree, always checking the minimum possible distance
dmin between the query and the hyper-rectangle surrounding the current
node. If dmin > r there is no point in visiting the node’s children and the
computation is saved. This is called exclusion-based pruning. The range
searching avoids computing most of the distances between pairs of points
further than r apart, which is considerable saving if r is small.

Better geometric approaches

After this brief review of the past approaches we can consider some of the ad-
vices presented in Gray and Moore 2001. The use of this techniques in our code
permitted to touch from 0.1% to 0.01% of the nodes, saving time considerably.

Single-tree search (Range-Counting Algorithm)

A straightforward extension can exploit the fact that unlike the conventional use
of range searching these statistics frequently do not need to retrieve all the points
in the radius but merely to count them. The mkd-tree has, in each node, the count
of the number of data it contains, the simplest kind of cached sufficient statistic.
At a given node, if the distance between the query and the farthest point of the
bounding box of the data in the box is smaller than the radius r, clearly every
point in the node is within the range of the query. We then can simply add the
node’s stored count to the total count. This is called subsumption.

Dual-tree algorithm

The idea is to consider the query points in chunks as well as defines by the nodes
in a kd-tree. Dual-tree search can be thought of as a simultaneous traversal of
two trees, instead of iterating over the query points in an outer loop and only
exploiting single tree search in the inner loop. Dual tree search is based on
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the node-node comparisons while single-tree search was based on the point-
node comparisons. Importantly, both kind of pruning can now be applied to
many query points at once, instead of each nearby query point rediscovering the
same prune during the single-tree search. The intuition behind dual-tree search
advantage can be seen by considering two cases. First, if r is so large that all
pairs of points are counted then single tree search will perform O (N) operations
where each query point immediately prunes at the root, while dual-tree search
will perform O (1) operations. Second, if r is so small that no pairs of points
are counted, single-tree search will run to one leaf for each query, meaning total
work O

(
N log N

)
, whereas dual-tree search will visit each leaf one, meaning

O (N) work. Note, however, that in the middle case of a medium-size r, duel-
tree is theoretically only a constant factor superior to a single-tree. (Also in Ram
et al. 2009).

Non-redundant dual-tree search

So far, we have discussed two operations which cut short the need to traverse the
tree further, exclusion and subsumption. Another form of pruning is to eliminate
node-node comparisons which have been performed already in the reverse order.
This is the case in which the two datasets to be compared are the same, so that
the pair A − B coincide with B − A. This improvement can be done simply
by (virtually) ranking the data-points according to their positions in a depth-
first traversal of the tree, then recording for each node the minimum and the
maximum ranks of the points in it owns and pruning whenever query-node’s
maximum rank is less than data-node’s minimum rank. This kind of pruning is
not practical for single-tree search. In our opinion this can be done in practice in
a better way. In this work we add some kind of rank to the nodes during the tree
build.

Multiple radii simultaneously

Most often in practice the two point is computed for many successive radii so
that a curve can be plotted indicating the clumpiness on different scales. Though
the method presented so far is fast, it may have to be run once for each of, for
example, 1000 radii. It is possible to perform a single a single, faster computa-



5.3 KD-Tdree optimization 50

tion for all radii simultaneously by taking advantage of the nesting structure of
the ordered radii, with an algorithm which recursively narrows the radii which
still need to be considered based on the current closest and farthest distances
between the nodes.

Previous methods were based on linked lists due to memory lack because the
tree structure need a lot of memory respect to the linked lists. In this way one
has to divide the space into cells and touch the cells to know where to calculate
the distances.
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6
Developing a Python correlation

code

The goal of this work, as we previously stated is to obtain the cross-correlation
between the halo centers and the DM, on scales from 10 kpc/h up to 5 Mpc/h.
To achieve this target we had to build some tools not available, for example an
easy way to count the couples as fast as possible and some functions to read the
initial data and to store the data read in a comfortable format.

The first thing to do was to decide which language to use. The candidates
were

• well-known Fortran, compiled, probably the most tested and the fastest
language for scientific computations

• C/C++, compiled, maybe the most used language in the world, fast, low
level, and with a not-so-comfortable syntax

• Python, interpreted, a modern, flexible and widely used language by Guido
Van Rossum

We have decided to use Python.
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6.1 Python

The first objections one can do is that I needed a fast way to do computation,
and Python is not famous for its speed. It is interpreted, high level and most
of the existing code in astrophysics is Fortran or, at least, C. A for loop in
Python takes order of magnitude more time respect to C or Fortran. Despite of
all of these considerations and other, more or less technical, the use of Python is
nevertheless growing fast in the scientific community. Why?

Flexibility

Python is a general purpose, object and aspect oriented language, so it permits
a lot of different styles of programming and to implement own code following
many different design patterns. It doesn’t have the strict and innatural syntax of
C/C++ nor the obsolete style of Fortran. In Python everything is an object, with
its methods and attributes. In Python its easy to cover the entire workflow, from
the data analysis to the plot of the results with only one language.Because of its
modularity it permits an easy integration, improvement and reuse of the code.

Fast developing

It is modern and flexible syntax and design permits a fast develop and debug
because one can test in the interpreter the pieces of code. The libraries are self-
documenting and the introspection permits to easy understand what is happening
or how a tool works. Introspection means that you can explore an object interac-
tively, it is possible to ask the properties, the values or any important information
about it.In Python no segmentation fault is possible: every error (in Python
you call them exception) is managed automatically or following the user instruc-
tion.

Libraries

Python itself is usually not fast enough for a massive computational application,
both because it is interpreted and because of its design. For some things (list
comprehension, . . . ) is quite fast, usually enough for the average user needed.
It is really not fast enough for the purpose of this work. Because it is a general
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purpose language it is obviously not specialized in treat mathematical objects
like array, matrices and so on. To fix this “lack” it was implemented a set of
libraries specialized in mathematical stuffs.Numpy and its extension Scipy per-
mits to glue together the ease and the power of Python with a speed that in some
cases can equal o beat Fortran and C. Numpy&Co are build on a C/Cython/Fortran
core but following the “Python model”.

Portability

Python code runs on a virtual machine, quite like Java, so that it can run on every
architecture for which a Python interpreter and the libraries are available. On the
machines without the necessary environment we had to manually compile and
install the missing libraries.

Parallel

The first version used mpi4py to parallelize the recursive traverse function using
“masks” to select which of the processes to activate. In practice with every call
of the function it was passed a list of processes ranks (the “mask”). At every
recursive call the list is distributed and every piece of it goes with a function
call. When the number of ranks in the list are less than the number of call the list
is regenerated. This solution was abandoned because it was very complicated
and difficult to handle. More, it imply a lot of message passing so it was no
convenient.

Therefore the code was developed as a serial code and optimized without
parallel capabilities but with the embarrassing parallel goal in mind. The code
is designed like a patchwork of function, i.e. the “main” call serially call the
functions one after another, and the “main” is a function itself, capable of receive
arguments like a function but also from the command line. Hence it is possible
to call the code from a script many times on different dataset but also to use
the main as a function in a “Parallel MapReduce” contest or to parallelize the
independent calls inside it, without the need of a massive message passing.

The final implementation of the code is used from a parallel starter that create
n processes with the multiprocessing library. Each process run a loop that
take the number of the data package to analyze from a shared queue and start the
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code on it. When one process finished the process start another process, until the
queue is empty.

MPI

MPI is an API specification developed to permits the communication between
processes running in parallel with non-shared memory. There are various imple-
mentations, both open source and proprietary. The MPI specifications permits
the exchange of data one-to-one, one-to-many, one-to-all (broadcasting), all-to-
one (reduce). There are possible both blocking or non-blocking calls (a blocking
call let the process waiting for the communication to finish) and it is possible
to synchronize the different processes, that is every processes are stopped until
every process reaches the synchronization point. MPI is not the only possibility
to develop a parallel code. Another possibility is, for example, OpenMP. It is an
API that supports the shared memory programming, for example on multi-core
processors.

Cloud computing

One of the possibilities to use the code developed for this work is in a cloud
architecture. The term cloud computing refers to the technology that permits to
use computing resources that are distributed and usually virtualized. Examples
are the Amazon EC2 service, or the Google Apps. In particular, a possibility was
to use the Picloud service, a Python cloud computing service based on Amazon
EC2. It permits to transfer the compute work on the Amazon EC2 cloud through
the use of some libraries provided.

6.2 Hardware

The code developed was run on different machines with different architecture.
In this case the use of python permitted to leave the code unchanged because it
runs on every architecture on which the python interpreter and the libraries are
available. The disadvantages are the need to recompile the Fortran module that
compute the distances and the installation of the interpreter and of the libraries.
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For machines with Intel processors the EPD distribution permits the immediate
installation of all the needed.

Now we present a brief view of the hardware used.

Leonardo

Leonardo is the last of the machines of Theoretical Cosmology group of Padua.
It was the storage machine and it is about 8 years old, so it is not so fast. It is
a Intel Xeon quad-core at 2.40 GHz with 2 GB of RAM. The OS is an Ubuntu
Server 10.04.

Monster

Monster is the Department of Astronomy cluster, constituted of

• 12 HP BladeServer BL640c with two Intel Xeon e5430 quad-core @2.66
GHz, 32 GB of RAM and 146 GB of hard disk storage

• 1 HP BladeServer BL680c with two Intel Xeon e7330 eight-core @2.40
GHz, 64 GB of RAM and 146 GB of hard disk storage

• a HP DL180 management and storage node with one Intel Xeon e5430
quad-core @2.66 GHz, 16 GB of RAM and about 1 TB of hard disks
storage

• about 4 TB of hard disks storage for the data

The OS is Rocks, a CentOS cluster distribution, and the jobs are managed with
the resource and queue manager TORQUE (Terascale Open Source and QUeue
manager) and with the job scheduler MAUI.It was not used because some prob-
lems with the recompilation of the Fortran module.

Pico

Pico is the new Theoretical Cosmology group computing server. It has two Intel
Xeon L5640 @2.27 GHz six-core with HyperThreading (i.e. we have 24 virtual
CPUs), 32 GB of RAM and 1 TB of hard disk storage. The OS is an Ubuntu
server 10.04.
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SP7

It is a IBM Power7 cluster hosted at DEI (Department of Information Engineer-
ing of Padua), with 192 Power7 CPUs @ 3.1 GHz. It has 600 GB of RAM split-
ted between the two virtual machines available. The OS are AIX6.1 and Suse
Linux Enterprise (SLES). Here we had some problems installing the needed li-
braries, luckily resolved by the system administrator.

SP6

Is is the Power6 system accessible at Cineca. Unfortunately it was not possible
run the code on this because of the difficulties to recompile some libraries on the
AIX OS.

Linus

A personal laptop, a EEEPC 1000HE, AtomN280 with 1 GB of RAM. The OS
is Ubuntu 10.10.

Uno

A personal laptop, a Dell Latitude E6410, Intel Core i7M 640 @ 2.80GHz dual-
core with HyperThreading and 8 GB of RAM. The OS is Ubuntu 10.10.

6.3 Developing the code

The original code used as base for this work is the kd-tree code available in the
“spatial” set of functions provided by Scipy, whose source can be retrieved at
https://github.com/scipy/scipy/

blob/master/scipy/spatial/kdtree.py .
Some of the techniques described in Chapter 5 was yet implemented in the

original code. It was able to handle multiple radii simultaneously (Section 5.3)
and to save computation excluding both the nodes which distance is too small
or to big that none of the radii under investigation is to be taken into considera-
tion (Section 5.3). If some radii entirely include a node, the code could directly
add the total number of couples instead of opening it (Section 5.3).The main
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additions are the capability to save computation pruning redundant node check
in case of auto-correlation (Section 5.3) using tags for each node and checking
for those before the recursive call, the minimum radius for correlation, the col-
lection of statistics during the computation and some tests on what is the better
strategy to open the leaves, removing the square roots and to convert to Fortran
the distances calculations.To better understand this it is useful to know how the
kd-tree code works.

Figure 6.1: Scheme of the serial part of a previous version of the code on a
blackboard.

Building the tree

In the first step a kd-tree is built from a n×3 array containing the positions of the
points. The tree is a python object containing some attributes and methods, and
two sub-objects: the inner nodes and the leaves. The building routine at each
step checks the number of datapoints, and if they are more than the leafsize, it
checks for the dimension (x, y or z) with the maximum spatial range and set the
split point in the middle of that range. This is not optimal, because splitting at
the media lead to a better balancing of the tree, but this choice give a faster code
with a quite well balanced tree. The dataset is now divided respect to the split
point, an inner node is created and the building routine is recursive called on the
two subsets. When the number of points is less than the leafsize a leaf is created.



6.3 Developing the code 58

Every node contain some information about the number of points contained, the
tag of the node, its memory size and in case of an innernode, the pointers to the
sub-nodes.

Figure 6.2: A 2D example with few particles of how the tree is built. The red
square are the nodes boundaries, both for leafnode and innernode, and in the
center there is the tag that uniquely identify the node in the tree. The nodes are
built to optimize the distribution of the particles, for example by splitting in two
halves the dimension with bigger spatial range.

The counting method

The counting routine is a method of the tree object and takes another tree as ar-
gument. Starting from the biggest nodes that are the entire trees, at every step it
takes as arguments two nodes, one for each tree, and retrieve the maximum and
minimum distance not between the two nodes (i.e. the maximum and minimum
distance between the boundaries of the nodes). These two quantities are then
compared with the array containing the radii for which to compute the correla-
tion.

Three cases are possible:
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• some radii are greater than the maximum distance between the nodes: for
these radii the total number of possible couples (including all the sub-
trees inside the nodes) are added to the corresponding cells in the array
containing the counts as function of the radius and then these radii are
dropped

• some radii are shorter than the minimum distance: this radii are dropped

• some radii intersect the nodes: for these radii the nodes are opened

Now we have some radii for which the two nodes must be opened. If the
two nodes are inner nodes, each node is divided and the counting routine is
recursively called on any combination of the sub-nodes. If instead the two nodes
are leaves, the code compute all the possible distances between the nodes (taking
care of saving computation in the self-correlation case). Then the distances are
sorted and using numpy.searchsorted() the code calculates for each radius
how many couples are separated by a distance shorter than that radius and add
them to the result array.

Counting strategies

In order to achieve better performance we try different approaches to open the
leaves. I particular, the differences between the strategies tested were if to main-
tain or not the square roots, if to use a linear or logarithmic scale for the radii
and if to use the sort or another method for counting the distances. The win-
ning strategy is to drop the square roots, to use a linear scale (but, the radii
are logarithmically equally spaced) and to maintain the distance counting using
numpy.sort() and numpy.searchsorted.

Searchsort and alternate distance counting

The original version of the code calculates the distances between all the pos-
sible couples between the two nodes and sort the resulting array. Then, the
numpy.searchsorted function identifies the index where to insert each radius
to maintain the array ordered, that is the number of distances shorter than the ra-
dius. The other way consists in to divide (using an integer division) the distances
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Figure 6.3: A simplified example of how an autocorrelation traverse works. This
is the beginning of a traverse. In this case the two trees are traversed up-down,
starting from the root node. The rhombs represents an if statement, for example
when the code check if a node is a leaf. The square are the action to be taken,
e.g. start a traverse or stop. The red branches are the non redundant actions, the
black and the blue are the redundant actions that the code recognize and perform
only once.

array by the bin length (the bins must be all equals): the result represents how
many times the distance is greater than the bin spacing, thus it is the index of the
bin to which we have to add 1.

Distances

The two most time consuming part of the code are traversing the tree and open
the leaves. In both cases is necessary to calculate distances, and in fact timing
the code shows that most of the time is spent in the routine. After some tests
the solution was to create an ad-hoc Fortran library containing few lines that
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compute the distances in a brute force way. This was included as a module using
f2py. The Fortran solution was thousands times faster than the Python one.

Goodies

Some other things was added to the code. They were not essential to the com-
putation but their presence eased our lives. First we add a lot of statistic during
the execution, such as where the execution is at any time or the characteristic
of the data: number of particles, tree dimensions, . . . . In particular to compute
the dimension in memory of the tree is not trivial. In Python every “variable”
is a link between the name and object in memory and an array is a link to the
array object, that contain the references to every object in the cells. In this view,
the dimension of a an array is only the size in memory of the “array object” but
it does not include the size of elements in the array. To obtain the “real” size
of the array it is necessary to recursive scan the parts of the array object and to
multiply the dimension of a cell by the number of cells. To obtain the size of
a tree is something similar, we had to scan the entire structure of the tree and
consider the sub-objects and the elements contained. The code was also fixed to
permits the persistence of the trees because the modules that permits to save the
Python objects can not handle nested object, such as the nodes of the tree. This
was done updating the module dictionary that contains the list of the object and
the namespaces references. Some checkpoints were added to the code to avoid
the analysis run on corrupted data.

Another useful feature was to embed all the logging needs in a logging struc-
ture provided by the logging module. In this way we had a powerful logging
engine that permits a coherent handle of all the messages, together with some
useful information about the the generation of the log message, e.g. where and
in which module the log message was generated, at what time, and so on.

Sometimes we take advantage of the tryexcept Python feature to permits a
clean exit from the code execution in case of problems, handling warning mes-
sages and saving the data before the stop. This, together with the Python error
handling, lead to an easy debug and to the total absence of nasty errors like
“segmentation fault” typical of the C/C++/Fortran programming.
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Leafsize optimization

To optimize the code we simulate a complete traverse of the trees built with
different leafsizes recording the time needed to a full traverse without opening
any leaves and multiply the number of virtually opened leaves by the time needed
to open leaves of different sizes. The result are shown in figure.

Timing the code results also in a rough model for the time dependence. We
find these approximate dependence:

ttrav ∝ N−1.66
lea f (6.1)

tdist ∝ N2
lea f (6.2)

ttrav ∝ N1.77
tot (6.3)

tdist ∝ N2
lea f (6.4)

travratio = ntrav ∼ 0.1% − 0.01% (6.5)

where ttrav is the time needed for traverse the entire tree, tdist the time to calculate
all the distances between two leaves and the other quantities the leafsize and the
total number of points.
The result is:

ttot = ntrav(n0, l0)

t0, trav(n0, l0)

(Ntot

n0

)1.77 (
Nlea f

l0

)−1.66 + t0, dist

Ntot

n0

(
Nlea f

l0

)2
(6.6)

It is not precise, also because the time depend strongly on the partial distri-
bution of the point.

Periodic boundary condition

There are some considerations to be done handling the border of the simulation
box. Out of the border, clearly, the counts drops. Doing the simulations usually
the so called “periodic boundary conditions” are used, that is, one side of the box
is linked to the opposite side. Analyzing the data one can use the same technique,
or, in a simpler way, approximate assigning a lower weight to the counts near the
border. In this work we prefer assuming that the division by the random counts
(also affected by the same problem) suppress the problem.



63 Developing a Python correlation code

Self-correlation

As presented before, the tree built with the modified code add to the nodes some
properties and one of these is a unique tag, that is a number that identify the
node. In case of auto-correlation there are two things to consider: the compar-
ison between different nodes two times and the comparison between the same
node in the two trees.

In the first case, choosing to consider only the nodes where node1.tag <
node2.tag solve the problem. In the second case the solution is simple again.
For the radii that entirely include the nodes it is sufficient to add node1.children*
(node2.children-1)/2 to the radii counts, for the opened leaves it is enough
to half the result.

Data formats and persistence

The original data were in unformatted Fortran binary format, so it was neces-
sary to try to understand how they were written using the original Fortran I/O
routines or some informations provided by the author of the simulations. To
manage these data was create some Python functions. The original data was
also sorted, splitted and indexed to improve the usability and the performance of
the code (memory vs CPU usage and so on).After some tests about the different
possibilities (pickle, zoobd, neodb, ascii, python binary files, . . . ) we chose the
HDF5 format to convert the original data and to store possible outputs. We also
create a routine capable of creating the tree using directly the file hierarchy, but
for the moment it was too slow to be used. One possible solution is to work
on the HDF5 library (PyTables) cache. For now we chose to not save the trees
because the time needed to build them is quite low.

Libraries

All the code, except for the small Fortran routine to compute the distances, is
written in Python using numpy for the numerical part and PyTables for the I/O.
For simplicity and optimization we adopted the Enthought Python Distribution
(EPD), which provide all what we need yet optimized with libraries such as
atlas, mkl and so on. The EPD packages are compiled for Intel’s hardware and
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for Linux, MacOSX and Windows, so it was necessary to compile the needed
packages to run on a Linux Power7 cluster. Untill now we didn’t find any way
to run on AIX.
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7
Results

7.1 GIF galaxy-galaxy auto-correlation

The first test we made to check the code was the computation of the galaxy-
galaxy correlation on the GIF data. The data was downloaded from the GIF site
http://www.mpa-garching.mpg.de/

Virgo/data_download.html and the original ASCII data were converted to
the HDF5 format to be compatible with the code and the other data. The distance
range we sample was between 10 kpc/h and 10 Mpc/h. The lower limit is because
of the softening length, the upper limit was enough to sample the 2H term. It took
about 16 seconds to compute the auto-correlation between 15445 galaxy centers
on Uno. Because of the geometry and clustering properties of the dataset we
chose to use the same number of random as the data particles. There was no need
to sample very small scales. This particular data was preferred because of the
small computational effort needed and the big literature comparison available. A
χ2 test on the result shows that our result is compatible with the literature. We
can compare these results with the results obtained by Diaferio et al. presented
in figure 7.2. We can see that the results of our code are in good agreement with
the Diaferio, White, and Kauffmann 1999 results. We would expect a slope of
about -1.8 and we find -1.7 with an unweighted χ2 fit.
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Figure 7.1: GIF galaxy-galaxy correlation.

7.2 GIF2 matter-matter auto-correlation

Because of the success of the first test we decided to test the code on the matter-
matter two point correlation function. In this case we chose the GIF2 simulation
data to have better mass and force resolution. The GIF2 particles data were
already available on our servers in Fortran binary files. We convert the original
data in a set of 22 HDF5 files containing the particles positions sorted on the x
coordinate. Every file contains 5 Mpc/h in x and about 2.5 × 106 particles. The
computation was performed in parallel using 22 CPUs on Pico and correlating
each file with itself and the two following to reach the 10 Mpc/h of distance
for the correlation. The minimum distance for the correlation was fixed at 10
kpc/h because of the softening distance of 6.6 kpc/h. The computation needed
63 processes and a total CPU time of 88 days, with a minimum of about 10
hours and a maximum of 120 hours for a single process. In figure 7.3 is shown
the results in a logarithmic scale (the last two distance bin are not visible because
they have negative values.). In this case we compare our results with the results
obtained by Hayashi and White in Hayashi and White 2008 in figure 7.4 on the



67 Results

Figure 7.2: Two point correlation function for galaxies by Diaferio, White, and
Kauffmann 1999.

Millennium data. The match is good but not perfect due to the different data and
parameter and resolution of the simulations.

The dark matter auto-correlation in figure 7.3 was the first test performed to
check the code. The result for the GIF2 data was compared with the results by
Hayashi and White 2008 on the Millennium 7.4. The differences on small scales
depend on the different smoothing length.
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Figure 7.3: GIF2 matter-matter correlation.

7.3 GIF2 halo-matter cross-correlation

The next test in preparation to the MII analysis was to check the routine on some-
thing similar to what we would do on the MII so we computed the halo-matter
cross-correlation on the GIF2 data.The halo-matter correlation, as presented in
Chapter 2, has a shape dominated by a NFW-like halo profile on small scales, av-
eraged over all the haloes in the simulations, and by the linear bias with the DM
auto-correlation on the bigger scales. The transition between the two regimes
happens around the virial radius Rvir, that can be considered the radius of the
halo. Because of the GIF2 softening the correlation was performed from 10
kpc/h to 10 Mpc/h to be able to check the big scale shape. On the smaller scale,
from 10 kpc/h to 316.2 kpc/h, the random data was ten times more than the data
to sample the halo-matter clustering properly.

The particles data was the same of the previous test, the halo centers was
extract from the original files of the simulation available on our servers, sorted in
x, indexed and converted in the HDF5 format. In this way only the amount of data
needed by the particles slice was load in memory improving the performance.
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Figure 7.4: Millennium matter auto-correlation and halo-matter cross-
correlation from Hayashi and White 2008.

The computation for the small scales was performed on 20 CPUs on Pico and
required about 26 hours and it was splitted on 1091 processes with a minimum
of 48 seconds and a maximum of 234 seconds. For the larger scales the random
was as many as the data. This takes 46 hours with a minimum of 56 seconds and
a maximum of 466 seconds. In this case the cross-correlation profile is obtained
by virtually sitting on each halo center and counting how many matter particles
there are at each radius.

The results, in figure 7.5, can be compared with the results by Hayashi and
White 2008 in figure 7.4 and with the theoretical predictions by Giocoli et al.
2010 in figure 7.6.



7.4 GIF2 halo-matter CC in mass bin 70

Figure 7.5: GIF2 halo-matter correlation.

7.4 GIF2 halo-matter cross-correlation in mass

bins

Once checked that the code was working well calculating the halo-matter cross-
correlation giving a result in good agreement with the results in literature and
with the theoretical previsions the next step is to investigate the contribution
of the signal from haloes of different masses. To do this we first extracted the
haloes belonging to the mass bins from the dataset. The bins were centered on
M∗
64 ,

M∗
16 ,

M∗
4 , 1, 4M∗, 16M∗ where M∗ is the mass where M∗ = 8.9× 1012M� and

correspond to 5171 simulation particles. The bins were from 1√
2

to
√

2 respect

to the center. In table 7.1 it is possible to have an idea of the selection in mass.
In this case we performed the analysis with 1099 processes for each mass

bin, 6548 in total, for a total time of 30 hours, a minimum of 0.5 seconds and a
maximum of 104 seconds. What we expected was to see the virial radius (that
is where the transition between the 1H and the 2H terms happens) to move at
bigger scales increasing the mass considered. This can be seen in figure 7.7 and
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Figure 7.6: Giocoli et al. 2010 halo-matter correlation predictions. In this figure
are clearly visible the contributions by the 1H and 2H terms and the sum of these
two. The green line is the contribution of the correlation between the halo center
with the smooth component of the halo, that is the particles belonging to the halo
but not to the substructures, the blue is the correlation between the halo center
and the clump component, that is the particles in substructures. The 2H term is
the composition of the halo center with the smooth and clump components of
other haloes. In addiction the profile calculated by our code is superposed to be
easily compared.

the results can be compared with those by Hayashi and White 2008 obtained
from the Millennium simulation. Another interesting analysis would be to fit
each obtained profile with the NFW profile, as in Hayashi and White 2008 but
due to the low resolution of the simulation and of the poor sampling of the data
pairs with random pairs this test was not so significant. For example the two
profiles corresponding to the higher masses do not cover the smaller scales. It
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Bin center M∗ bin center (M�) min (M�)
1/64 1.4 × 1011 1.0 × 1011 2.0 × 1011

1/16 5.6 × 1011 3.0 × 1011 7.9 × 1011

1/4 2.2 × 1012 1.6 × 1012 3.1 × 1012

1 8.9 × 1012 6.3 × 1012 12.6 × 1012

4 3.6 × 1013 2.5 × 1013 5.1 × 1013

16 1.6 × 1014 1.1 × 1014 2.3 × 1014

Table 7.1: Mass bins for the halo-matter cross-correlation in units of M∗ and M�.

can be also noticed that lower masses haloes have steeper slope on small scale
than the more massive haloes. This is because on average they are more centrally
concentrated.

Figure 7.7: GIF2 halo-matter in mass bin correlation. in this figure can be seen
how the transition between the 1H and 2H terms move to bigger scale increasing
the mass of the haloes.
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Figure 7.8: In figure you can see the GIF2 halo-matter cross-correlation per dif-
ferent mass bin computed by our code and the theoretical prediction by Giocoli
et al. for a mass bin centered on M∗. The drop of the theoretical prediction at
2 × 10−1 is due to the mass cutoff in the Fourier space. A part from this the
profiles are in good agreement.

7.5 GIF2 subhalo-matter cross-correlation

As in the halo-matter cross correlation the subhalo-matter cross-correlation is
the composition of more than one contribution. In this case, as presented in 3.1,
the 1H term is the sum of the correlation with the smooth and clump component
of the same sub-halo and with the matter in other substructures. The 2H term
contain the correlation with the smooth component and clump component of
other haloes. To select the sub-haloes we extracted the haloes with more than
200 particles, than for each halo we retrieve the list of the contained sub-haloes.
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Figure 7.9: GIF2 subhalo-matter correlation.

For each sub-halo the coordinates were converted from those of the host halo
center to the global ones. Some check were done to avoid problems related to
the presence of void files.

It took a total CPU time of 35 hours and the computation was performed
splitting it in 2184 different processes, with a minumim and maximum time
needed of 23 and 272 seconds.

Subhalo-matter cross-correlation in host halo mass bins

In the same way we would computed the cross-correlation for the haloes belong-
ing to different mass bins we were interested in investigate the signal due to the
substructures hosted in haloes of different masses. On the base of the host haloes
mass selection we extracted the corresponding substructures and computed the
cross-correlation with all the particles.

As it was done for the halo-matter correlation we splitted the computation in
many different processes, 1100, feeding many CPUs at the same time. The total
CPU time is 43 hours and the minimum and the maximum are 5 and 91 seconds
respectively.
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Figure 7.10: Subhalo-matter cross-correlation. The figure compares our results
from the GIF2 analysis with the theoretical predictions from the model of Gio-
coli et al. 2010. It can be seen the good agreement between the two profiles. For
the theoretical predictions are also shown the different contributions: the subhalo
correlation with the subhalo matter, the smooth matter in the host halo, the mat-
ter in other subhaloes in the same host halo, the smooth and clump components
of other haloes.

The result now depends on new quantities: at the smallest scales the den-
sity profile of the substructures itself; at intermediate scales the distributions of
smooth matter around a sub-halo; at the largest scales the biased distribution
of sub-haloes compared to matter. What we obtained shows some interesting
features but it is limited by the low resolution at small scales but it is difficult
to interpret. At small scales the sub-haloes hosted in smaller haloes present a
steeper profile, probably due to their dynamical history inside the halo. At inter-
mediate scales we can see that sub-haloes hosted in larger haloes live in denser
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regions, because they are located, on average, at smaller fraction of the host
halo virial radius. At the largest scales we observe the subhalos-matter biased
distribution.

Figure 7.11: GIF2 subhalo-matter in mass bin correlation.

7.6 Bias

We can consider the bias as an indicator of how two different distribution we are
considering differs one from the other. It also tells us how one distribution can
well represents the other. We have, in the previous chapter, shortly mention that
the large scale halo-matter correlation follows, biased, the matter-matter corre-
lation profile. If we divide the halo-matter profile by the matter-matter one on
large scale we have a an idea of how well the halo-matter profile represents the
matter-matter one. Our results were compared with those in Sheth and Tormen
1999 and there is no a perfect agreement as you can see in table 7.2. Because our
profiles are in good agreement with those in literature we think that a possible
explanation can be the scale we sampled, 3.5 Mpc/h because of the data avail-
able. It is possible that the same operation on bigger scales would yield a better
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result. We checked our profiles for each mass bin we analyze in the previous
sections. Another possibility is to divide the entire profiles as presented in Mo
and White 1996. In this way we obtain a more general idea of the bias between
the two distribution, that is a complete view of how the halo-matter distribution
differ on all scales to the matter-matter one. The results can be seen in figure
7.12 and can be compared with the results from Mo and White 1996 presented
in figure 7.13. Our results are quite different respect to those by Mo et al. be-
cause their simulations did not sample the small scales. We have much more
resolution on these scales so our bias profile present is modified by the presence
of the halo profile. Moreover, they investigate scales larger than the ours, so in
our profiles we do not reach the scale where the shape is flat but only where the
profile grows.

M∗ M� data b (M) lit. b (M)
1/64 1.4 × 1011 1.25 0.32
1/16 5.6 × 1011 1.34 0.4
1/4 2.2 × 1012 1.64 0.6
1 8.9 × 1012 1.53 1
4 3.6 × 1013 2.01 1.1
16 1.6 × 1014 3.04 –

Table 7.2: Comparisons between the bias measured from the results at r = 3.5
Mpc/h and the bias from Sheth and Tormen 1999. The values are not in agree-
ment and this can be due to because our profile does not represent the bias on
such scale but it is necessary to sample bigger scales.
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Figure 7.12: Gif2: bias profiles obtained dividing the halo-matter cross-correlation in mass bins by the matter-matter auto-
correlation as in Mo and White 1996.
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Figure 7.13: The halo-matter correlation function profile divided by the matter-
matter one as function of the normalized radius, from Mo and White 1996.
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8
Conclusions

The goal of this work was to investigate the cross-correlation between sub-haloes
and dark matter using the Millennium II simulation data. This goal was not
achieved because of some technical problems. First we had some problems to
obtain the data: they arrived on an hard disk from MPA in Garching but due to
a failure in the first hard disk we had to wait for a second shipping. Moreover
the Millennium II data was in a “private” Fortran binary format and we can only
access the particles positions from the hard disk and the FOF centers from the
online database, but we were unable to reconstruct the information about the
sub-haloes centers. We also had some problems with our servers and to gain
access to some CPU time on other machines. Some of the machines furthermore
had some compatibility problems with the code so we had to spend a lot of time
on this.

Despite this problems we successfully tested the code on the GIF and GIF2
code and obtained the results presented in the previous chapters. Some test slices
of the Millennium II are now under analysis and we will start with the subhalo-
matter cross-correlation as soon as possible.
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8.1 Further works

The code is now fully working and its results tested. There are however some
possible improvements. First we have to do is to clean the code and to let it be
more general. The second step is about optimization. Now the code has good
times but it is possible that with some changes the times will be smaller. Some
possible improvements are to rewrite some parts in Chyton or C/C++/Fortran,
but we thinks that this way is not so promising. In the future we will try to
convert some part of the calculation to be run on GPUs and may be some further
modifications to the tree code such as more statistics on the nodes and less on
the fly work will give us better execution times.
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Better bugs

A.1 array2int

With the introduction of the Fortran version of the distance calculation the out-
put of the distance between two nodes became a one-element array (instead of
the float obtained from the previous, Python, version). Thinking about the pre-
vious conversion from the configuration file parsing I converted the output of
the Fortran module to int instead of converting it to float. Converting the
data coordinates in kpc/h give the correct results.The result was that for a de-
fined leafsize, depending on the total number of particles, the differential data
counts dropped at little radii.What actually happened was that the distances be-
tween nodes were truncated to int and so they were underestimated. In this
way little radii that should be excluded or at least should open leaves included
all the leaves, leading to higher cumulative counts. The subtraction of the pair of
adjacent counts eventually gave lower differential counts. Random counts, data
in kiloparsecs or bigger leaf give a smaller effect that was invisible, the same
happened for bigger radii, with higher counts.
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A.2 .sort instead of .sort()

Two trivial parenthesis forgotten in calling the .sort() method of the array
containing the distances return the memory address of the method instead of
sorting the array, according to the Python syntax. In this way no error was raised
but the counting for opened leaves was wrong.

A.3 Random population

In case of self-correlation we thought that use two set of random with only one
set of data will improve the error by overestimate the random. Bad idea!! This
choice let the code counts 2n

(n−1) ∼ 2 times the random couples. To fix this one
can simply use the same number of sets both for the data and for the random or
divide the final counts. The first solution save a lot of computation.
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